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Abstract— Accurately predicting network traffic is critical 

for real-time anomaly detection, improved service quality, and 

effective resource management. This research delves into the 

most recent developments in CEEMDAN-integrated hybrid 

deep learning approaches for network traffic prediction. 

CEEMDAN breaks down data on unpredictable and non-linear 

network connections into IMFs, therefore isolating important 

data components. Deep learning architectures enhanced with 

attention mechanisms which give relevant features top priority 

for enhanced prediction accuracy are further investigated using 

these IMFs. By means of advanced data decomposition and 

feature selection, studies using real-world network traffic 

datasets show that these hybrid approaches exceed conventional 

approaches, so addressing constraints. In order to offer precise 

and context-aware traffic predictions, this study highlights the 

potential of CEEMDAN and attention driven models, leading to 

the development of network management systems that are 

stronger and more flexible. 

Keywords— Deep learning, Network traffic prediction, 

attention mechanism, gated recurrent unit, temporal 

convolutional network. 

I. INTRODUCTION 

Due to the fact that society is becoming more and more 

digital, network communication has emerged as an essential 

component in the process of developing a smart and linked 

future. As of October 2022, there are 5.07 billion internet 

users, up 171 million from the previous year, according to the 

Global Cyber Statistics Report. This figure accounts for 

roughly 63.5 % of the worldwide population. The amount of 

data generated and received via the internet has risen owing to 

the exponential development in internet use. Simultaneously, 

the growth of 5G connectivity, cloud computing, and the IoT 

has expedited the development of network data services, 

necessitating more bandwidth from network base stations. The 

expansion has brought about several major issues, such as 

more network congestion, higher latency, and uneven 

distribution of resources.  

In order to improve service quality, network traffic 

analysis is a must. Reliable traffic trend analysis and 

forecasting are cornerstones of intelligent base station 

scheduling and self-management. Having the ability to 

anticipate traffic peaks enables proactive steps to be taken, 

such as raising the transmission power of base stations, in 

order to reduce congestion. On the other hand, predicting 

traffic troughs permits power reductions and hibernation for 

certain base stations, which in turn reduces the amount of 

energy that particular base stations consume. Consequently, 

improving the quality of communication network services 

relies heavily on precise network traffic forecasts. 

The findings of recent study suggest that it is possible to 

forecast network traffic and that it displays temporal 

connections. On the other hand, forecasting network traffic 

continues to be difficult because of the inherent instability and 

complexity of the network, as well as features such as 

nonlinearity and unpredictability. Recent research has 

concentrated on finding solutions to these problems, with 

special attention to the instability and time-series correlations 

that are present in network traffic. 

Deep learning, famous for its ability to identify nonlinear 
features, is one of the best ways to accomplish this job. 
Popular models for time-series data include Gated Repetitive 
Units (GRUs) and Very Short-Term Memory (LSTMs), and 
are good at capturing long-term relationships. Moreover, 
TCNs, 

 which make use of causal convolutions, provide 
considerable advantages for the study of time series. The 
CEEMDAN-TGA technique is a hybrid deep learning 
approach that combines these models utilizing a device for 
attention. Improving the precision of feature extraction and 
prediction is its intended use. 

Using the CEEMDAN technique, network traffic data is 
first deconstructed into various modes. These modes are then 
rebuilt into trend and noise sequences in order to enhance 
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denoising. This methodology is known as the CEEMDAN-
TGA approach. The following stage is to employ a hybrid 
model integrating TCN and GRU and extract both short-term 
as long-term characteristics from the data underlying the 
network's traffic. From the various ways the attention function 
fine-tunes the prediction is by modifying the model's weights. 
We compare CEEMDAN-performance TGA's to that of well-
established baseline methods to show that it is effective. 

This study makes a number of important advances, 
including the following:  

• Introducing the CEEMDAN method for adaptive 
decomposition and noise reduction in network traffic 
data, addressing mode mixing and white noise errors. 

• Creating a hybrid deep discovering model (TCN-
GRU-Attention) for helpful multi-feature extraction 
that can gather both quick and long-term 
characteristics. - - improving the efficacy and stability 
of model training by hyperparameter adjusting using 
the Bayesian Optimization Algorithm (BOA). We 
recommend an organizing technique that is based on 
this method to facilitate future work, and we conduct 
investigations with real base the station databases to 
validate the accomplishment of the CEEMDAN-TGA 
model. The following remains the outline for the rest 
of the paper after that: 

• An outline of relevant research on predicting network 
traffic is given in the second part. In Section III, we 
go into detail about the CEEMDAN-TGA method. 

 Presented in Section IV are the findings of experiments 
conducted on actual datasets. In Section V, we present various 
solutions for energy conservation and base station scheduling. 
The conclusion of the study includes a summary as well as a 
discussion of potential future research directions. 

II. RELATED WORK 

With strong self-similarity and long-term 
interdependence, network traffic displays time-series 
properties [13], [14]. Numerous fields, including economics, 
the natural sciences, and network administration, stand to 
benefit greatly from solving the time-series analytic challenge 
of predicting network traffic [15], [16]. Network operators can 
improve network efficiency, optimize resource scheduling, 
and guarantee reliable Quality of Service (QoS) via accurate 
traffic forecast.  

Many techniques for predicting network traffic have been 
developed by researchers over the years. These methods can 
be generally classified into two categories: those using 
conventional linear models and those using nonlinear neural 
networks. 

 Classical linear methods, such as naive statistical 
approaches and parametric techniques, analyze historical data 
but struggle with the burstiness and nonlinear characteristics 
of traffic. Examples of well-liked parametric models are AR 
(Autoregressive) [17], MA (Moving Average) [18], and 
various combinations of the two, such as ARMA [19] and 
ARIMA [20]. 

 While these models are theoretically robust, they fail to 
capture the self-similarity and long-term correlations inherent 
in network traffic, and they are limited in handling nonlinear 
dynamics [21]. 

On the other hand, nonlinear approaches have been more 
popular for network traffic prediction since the introduction of 
deep learning, which provides better capabilities for collecting 
complicated patterns. Models trained using neural networks, 
such as CNNs [22] and RNNs [23], have shown exceptional 
performance in applications involving computer vision and 
NLP. 

 For traffic prediction, researchers employ techniques like 
To capture long-term dependencies, architectures based on 
RNNs, Multilayer Perceptrons (MLP), Stacked Autoencoders 
(SAE), and Support Vector Regression (SVR) [24], [25]. For 
problems like training-time vanishing gradients, two RNN 
versions that stand out are the LSTM plus Gated Recurrent 
Units (GRU) models. Regarding the acquisition of long-term 
dependencies, GRU's simplified form and fewer parameters 
really shine. Transient Convolutional Networks (TCN), 
leveraging dilated causal convolutions and residual 
connections, have also shown excellent performance in time-
series feature extraction [26], [27]. 

Signal decomposition methods further enhance prediction 
accuracy by isolating critical components of the data. 
Improving feature extraction is the goal of methods, including 
EMD [40], EEMD [28], and VMD [29], among others. These 
techniques transform non-stationary sequences into 
components with a stationary distribution. While these 
methods have their applications, they also come with some 
drawbacks, including sensitivity to parameters and mixing 
modes [30]-[34]. Complementary Collective Empirical Mode 
Decomposition using Adaptive Noise (CEEMDAN) is able to 
overcome these challenges by adaptively dividing sequences, 
which effectively isolates noise and gives clearer features. 
difficulties [35]. 

Hybrid models combining multiple approaches have 
emerged to address the limitations of single-method solutions. 
For example, integrating LSTM with attention mechanisms 
leverages LSTM's temporal feature extraction capabilities and 
attention's ability to adjust hidden state weights, improving 
prediction accuracy [36]. Combining CNN, LSTM, and other 
components has also yielded significant performance 
improvements [37]. Methods incorporating signal 
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decomposition, such as wavelet-based LSTM models [38] or 
TCN-LSTM hybrids with preprocessing filters [39], have 
further demonstrated the benefits of multi-method 
approaches. 

To address noise and limited feature extraction in existing 
methods, we propose CEEMDAN-TGA, combining 
CEEMDAN, TCN, GRU, and attention mechanisms. GRU 
replaces LSTM for simpler structure and faster training while 
preserving long-term dependency modeling. TCN captures 
short-term patterns such as bursts and periodicity via 1D 
convolution. The attention mechanism optimizes hidden state 
weighting to minimize information loss. 

III. METHODOLOGY 

This part goes over the CEEMDAN-TGA in great length 
together with the fundamental ideas and benefits of every 
module. 

A. CEEMDAN 

Common examples of non-stationary data include 
sequences of network traffic, which display nonlinear, time-
dependent, and random properties. The reliability of traffic 
forecasts for networks is greatly impacted by these 
characteristics. Decomposing In order to increase prediction 
accuracy and limit the influence of noise, this research 
employs the Complementary Experimental Mode 
Decomposition Ensemble with Adaptive Distortion 
(CEEMDAN) to transform nonlinear and irregular, network 
traffic sequences towards stationary components. 

 Noise is then identified based on the characteristics of the 
decomposed components, enabling the reconstruction of noise 
and trend sequences. The trend sequence is subsequently 
utilized for prediction tasks. 

According to earlier studies, CEEMDAN is based on 
EMD [41] and EEMD [28], which are the bases of Empirical 
Mode Decomposition (EMD). By breaking them down into 
their Intrinsic Mode Function (IMF) components, EMD 
successfully captures changes in trend across different time 
scales for non-stationary data sets. However, mode mixing 
does occur often in EMD. Negative and positive Gaussian 
white noise pairs are introduced to the data by EEMD to 
address this issue and reduce modal mixing. Nonetheless, 
residual white noise in EEMD can still impact the data.  

In order to optimize this approach even further, 
CEEMDAN extracts each order's IMF and then calculates the 
overall average by adding adaptive white noise in pairs of 
equal magnitude and opposite sign. In addition to fixing 
incomplete decomposition, this approach reduces 
computational load dramatically while achieving 
reconstruction errors close to zero [42].  

Initially, let's define Ei(·) where Ci(·) represents the ith 
iteration of the inside maximum frequency (IMF) after EMD 
breakdown, wj represents the sequence of normal-distributed 
Gaussian white noise, j represents the iteration of white noise 
adding times, as well as ε represents the value of the white 
noise parameter. Here are the primary procedures that 
CEEMDAN adheres to:  

     Applying Gaussian white noise to the initial signal x(t) 

yields the function x′(t) = x(t) + (−1)mεwj, with m is either 

1 or 2. The new signal is decomposed using EMD to get the 
initial IMF. Calculating C1j (t) is as follows: 

 

To acquire the first IMF, first calculate all of its 
components individually. Then, take the overall average and 
calculate C1(t). The formula for computation, CEEMDAN, is 

 

Finally, determine the first stage's residual r1(t). 

 

Fourthly, the residual r1(t) is re-added with The initial IMF 
Dj1 (t) is computed by EMD after a fresh signal is generated 
using both sides of pair Gaussian white noise. At long last, 
CEEMDAN calculates the second IMF C2(t) by averaging the 
N IMFs that were generated. 

 

Determine the second stage's residual r2(t). 

 

Keep going until you have a monotonic function as the 
residual signal, and then stop decomposing. We can 
decompose the original signal x(t) as (6) if the number of IMFs 
acquired is M. 

 

Reconstructing the trend component using the properties 
of each of the signal's stationary components follows 
CEEMDAN decomposition, which first isolates the non-
stationary signal into numerous stationary components. The 
denoised network traffic stream is obtained from the 
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reconstructed signal. When utilizing CEEMDAN for 
denoising, you may improve prediction accuracy and lessen 
the effect of noise. 

B. TCN 

Time sequence prediction makes heavy use of TCN due as 
it outperforms other recursive structures in terms of memory 
capacity [27] and time sequence modeling. An new one-
dimensional convolutional network called Tri-Convolutional 
Network (TCN) combines dilated convolution, residual block, 
and causal convolution. 

 Figure 1 depicts the TCN architecture, which utilizes 
network traffic history to its fullest potential. 

 

Fig. 1. TCN structure diagram. 

A. Causal convolution 

Layer values at time t in a causal convolution network are 
simply dependent on the values of the layers that came before 
and after it.Because the causation relationship is perfectly 
followed by the link as well as the data transfer across the 
various levels of the network, the latter takes use of data stored 
in the past. Increasing the number of convolutional neural 
network layers to adjust for gradient disappearance, 
complicated training, and inadequate fitting degree leads to 
issues. for enough historical data. 

B. Dilated convolution 

If you find that causal convolution has too many layers, 
diluted convolution may be able to help. A bigger By 
increasing the convolution region of view by diluted 
convolution, we may collect more historical information with 
fewer layers of networking and less computation, expanding 
the receptive field. Here is the formula for determining dilated 
convolution: 

 

The parameters for the convolution process are ⊙, Both 

the dilation factor (d) and the size (k) of the gaussian kernel 
are important parameters. 

 

C. Residual block 

To avoid the issues of data form and dimension change 
caused by convolution, as well as the disappearance and 
explosion of gradients caused by deep networks, one-
dimensional convolution is suggested as the residual block for 
deeper models. After two rounds of dilated causal 
convolution, weight normalization, activation function, and 
dropout layer, the final output result is communicated to the 
next layer using one-dimensional convolution as the residual 
module for skip connection. The construction of the residual 
block and the formula for the residual connection are shown 
in Figure 2. 

 

 

Fig. 2. Residual block structure diagram 

D. GRU 

To improve upon RNN and LSTM, the GRU algorithm 
was developed. The GRU builds upon the LSTM's gate 
control structure by combining the input and forgetting gates 
into a revision gate (zt%) and repurposing the output gate as a 
reset gate (rt%) [43]. The update gate measures the quantity of 
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data retained by ram from the previous instant to the present 
moment, whereas the reset gate measures the total quantity of 
historical data required to be wiped. You can see the GRU's 
structural diagram in Figure 3. 

      Compared to LSTM, GRU offers faster calculation 
speed, fewer parameters, a simpler structure, and less internal 
unit redundancy; it is also more in line with the timeliness 
criterion in the field of network traffic prediction. 

 

Fig. 3. GRU structure diagram. 

The phrase that describes how the GRU works is: 

 

At time t, the input is x, the output is ht−1, the activation 
function is σ, the weight matrix is W, the reset gate is rt, and 
huntu is the candidate hidden state. 

E. Attention mechanism 

Passing lengthy sequences of traffic data from the network 
via GRU may result in diminished impact since all relevant 
information cannot be completely considered and stored. The 
attention mechanism, when combined with GRU, may 
efficiently filter inputs to increase prediction accuracy. 
Improved prediction accuracy may be achieved by the use of 
an attention mechanism, which regularly evaluates the 
relevance of information and focuses on essential components 
[46].  

The attention process filters away superfluous information, 

among other things. Reducing the weight actively removes 

data with poor correlation, while increasing it improves the 

data with strong correlation. Due to the strong daily, weekly, 

and monthly periodicity in network traffic data series, it is 

crucial to record the periodicity and supplementary 

information in order to enhance the accuracy of predictions. 

Suppressing features with poor or irrelevant correlation—a 

consequence of bursty information and noise—improves the 

approach's overall performance and efficiency. 

A. CEEMDAN-TGA 

We introduce the CEEMDAN-TGA, a hybrid model that 
integrates the denoising strength of CEEMDAN with TCN's 
short-term feature extraction, GRU's long-term dependency 
capturing, and attention mechanism's weight assignment 
capability, to optimize hidden feature extraction and reduce 
noise effects. The attention mechanism, CEEMDAN, TCN, 
and GRU are all seamlessly integrated in the CEEMDAN-
TGA design. Signal decomposition was the first step that 
CEEMDAN used to identify and eliminate noise. Next, we use 
the attention mechanism to fine-tune the weights, and then we 
merge the benefits of the TCN and GRU nonlinear models to 
accomplish sufficient feature extraction. The fully linked layer 
generates accurate network traffic forecasts by mapping 
collected long- and short-term contextual data to real traffic 
values. Looking at Figure 4, you can see the CEEMDAN-
TGA technique. 
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Fig. 4. CEEMDAN-TGA structure diagram 

 Our feature extraction method is a hybrid one, since 
network traffic features exhibit both time-dependent long-
term dependencies and time-dependent short-term local 
dependencies. The hidden elements of various methods can be 
investigated with the use of appropriate training and learning 
procedures, since different approaches have different features 
and benefits. Because it uses convolutional networks, which 
are good at capturing short-term local data information, TCN 
is suitable for network traffic prediction in most cases[45] and 
its receptive field may be modified dynamically. Due to their 
features, GRU's small parameters and rapid convergence 
make it easier to manage the timely and unexpected nature of 
network data. The network traffic forecast problem is best 
handled by a mixture of TCN and GRU, since they can extract 
both characteristics concurrently. 

IV. RESULT ANALYSIS 

The CEEMDAN-TGA method is tested on real base 
station data to evaluate its performance. 

A. Data Set Description 

The dataset used in this study comes from the “AIIA Home 
Network Competition: Network Traffic Forecasting,” co-
organized by China Mobile and the China Artificial 
Intelligence Industry Development Alliance [47]. It includes 
hourly traffic data from three anonymized base stations 
between January 2017 and November 2018. This experiment 
uses a subset—data from January 1 to March 31, 2017—
totaling 2160 hourly entries. To capture temporal patterns, a 
24-hour input window is set for forecasting, with an 80:20 
split into training (1728 samples) and testing (432 samples). 
The TGA model is trained and tuned using Bayesian 
optimization, and evaluation is conducted on the test set. 

The traffic exhibits strong daily periodicity, peaking 
between 11:00–23:00 and dipping from 03:00–08:00. 
Burstiness appears in short-term spikes and during events such 
as the Chinese New Year (samples 620–790), where traffic 
surges due to increased usage. The data is inherently 
nonlinear, reflecting complex and dynamic network behavior 
[47]. 

B. Data Preprocessing 

Data preprocessing involves normalization and denoising. 
Due to the complexity of network traffic, Min-Max 
normalization is applied to scale the data to [0,1], improving 
training convergence and mitigating gradient vanishing issues 
[1]. The transformation maps each value Xi using the formula: 

 

Next, CEEMDAN decomposes the normalized series into 
Intrinsic Mode Functions (IMFs) and a residual. In this study, 
8 IMFs and 1 residual are generated. These IMFs represent 
distinct characteristics: IMF1 shows noise, IMF2–4 show 
periodicity, and IMF4–8 along with the residual reveal trend 
components [2]. 

To identify and remove noise, combinations of IMFs are 
tested by eliminating suspected noisy ones, reconstructing the 
remaining components, and evaluating prediction 
performance using a hybrid deep learning model. The optimal 
outcome is achieved when IMF1 is excluded—confirming it 
as the primary noise carrier—while IMF2–8 and the residual 
are retained as trend signals [3]. 

The denoised data, reconstructed from the retained 
components, is then used for training and forecasting with 
the Temporal Graph Attention (TGA) model. 

C. Evaluation metrics 

The effectiveness of network traffic prediction methods is 
typically assessed using error metrics such as Root Mean 
Square Error (RMSE), Mean Absolute Error (MAE), and the 
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R-squared coefficient (R²). Lower RMSE and MAE values 
indicate more accurate predictions, while a higher R² reflects 
better model fit [4]. 

 

D. Prediction result analysis 

The experiment evaluates prediction performance through 
both visual (Figure 5) and quantitative analyses. Visually, the 
CEEMDAN-TGA model closely follows the real traffic 
trends, outperforming other models with clearer accuracy and 
better fit [1]. Quantitatively, CEEMDAN-TGA yields the 
lowest RMSE and MAE and highest R², indicating superior 
accuracy [2]. 

 

(a) ARIMA 

(b) XGBoost 

 

(c) SVM 

 

(d) LSTM 

 

(e) TCN Model 

 

(f) GRU Model 
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Fig. 5. Predicted values of CEEMDAN-TGA compared to the baseline 

method. 

 With CEEMDAN denoising, CEEMDAN-TGA 

achieves RMSE of 0.05149, MAE of 0.04207, and R² of 

0.9828. Without denoising, TGA's RMSE and MAE increase 

to 0.05856 and 0.04306, and R² drops to 0.9777—showing 

12.07% RMSE and 2.3% MAE reductions, and a 0.52% R² 

improvement [3]. This confirms CEEMDAN’s effectiveness 

in noise reduction. 

 Compared to advanced models like 3SG+TCN+LSTM, 

SSA+LSTM, and Wavelet+LSTM, CEEMDAN-TGA shows 

a 7.72% lower RMSE, 2.12% lower MAE, and 0.31% higher 

R². Against traditional models (XGBOOST, SVR, ARIMA), 

its advantage is even more pronounced [4]. 

 CEEMDAN-TGA’s time complexity is O(n²), mainly 

due to CEEMDAN and GRU-Attention, while TCN 

contributes linear complexity. Optimized with Bayesian 

tuning, training and prediction times are 280.11s and 0.1086s, 

respectively—suitable for practical use [5]. 

 The model’s strength lies in TCN’s ability to capture 

short-term spikes, GRU’s effectiveness with long-term 

patterns, CEEMDAN’s noise suppression, and the attention 

mechanism’s feature filtering. Together, these enhance both 

accuracy and robustness [6]. 

 

Fig. 6. Traffic Flow Over Time 

In Figure 5 plot shows the variation in traffic volume over 
time. It highlights clear patterns of peak and off-peak hours, 
indicating regular daily traffic cycles—useful for time-series 
forecasting models. 

 

Fig. 7. Actual vs Predicted Traffic Flow (Train and Test) 

In Figure 6 plot visualizes the actual traffic volume alongside 
model predictions for both training and testing periods. The 
actual data is shown as a continuous line, while the predictions 
are overlaid with proper time shifts to match their real-time 
positions. This helps assess the model's accuracy across the 
entire time series. 

V. CONCLUSION 

Base station anomaly detection, intelligent scheduling, and 
congestion control all rely on accurate prediction of network 
traffic. Extensive feature extraction and effective denoising 
are necessary for precise prediction because of the complexity 
of network traffic patterns. Our CEEMDAN-TGA is a deep 
learning hybrid that incorporates an attention mechanism, 
GRU, and TCN; it has been evaluated in this way. Improving 
prediction accuracy and resilience is achieved by denoising 
and decomposing the data using CEEMDAN, extracting local 
features using TCN, capturing dependencies using GRU, and 
adjusting information weights using the attention method. The 
results of the experiments demonstrate that CEEMDAN 
successfully reduces noise.  

and that the CEEMDAN-TGA model has substantial 
performance benefits according to quantitative and qualitative 
assessments. These precise forecasts serve as a springboard 
for further investigation into base station scheduling and 
energy savings. There will be two primary areas of future 
study. Finding a reliable metric to differentiate between trend 
sequences and noise sequences is the first step towards 
eliminating all noise. Secondly, taking a more methodical 
approach to the problem by delving further into the topic of 
network traffic scheduling in order to integrate prediction and 
scheduling thoroughly. 

REFERENCES 

 
[1] K. Sundaresan, ‘‘5G: An evolution towards a revolution,’’ in Proc. 24th 

Annu. Int. Conf., Oct. 2018, p. 659. 

[2] A. Imran, A. Zoha, and A. Abu-Dayya, ‘‘Challenges in 5G: How to 
empower SON with big data for enabling 5G,’’ IEEE Netw., vol. 28, 
no. 6, pp. 27–33, Nov. 2014. 



Page 215 Vol 14 Issue 05,May 2025 ISSN 2456 – 5083 

    

  

      

   

 

  

    

  

 

 

 

 

 

 

 

 

 

 

[3] W. Xu, G. Zhang, and B. Bo, ‘‘Ten key ICT challenges in the post- 
Shannon era,’’ Scientia Sinica Mathematica, vol. 51, no. 7, pp. 1095–
1138, May 2021. 

[4] M. Kang, J. Song, and P. Fan, ‘‘Survey of network traffic forecast 
based on deep learning,’’ Comput. Eng. Appl., vol. 57, no. 10, pp. 1–
9, Oct. 2021. 

[5] W. Jiang, ‘‘Cellular traffic prediction with machine learning: A 
survey,’’ Exp. Syst. Appl., vol. 201, Sep. 2022, Art. no. 117163. 

[6] C. Pan, Y. Wang, H. Shi, J. Shi, and R. Cai, ‘‘Network traffic prediction 
incorporating prior knowledge for an intelligent network,’’ Sensors, 
vol. 22, no. 7, p. 2674, Mar. 2022. 

[7] N. Jiang, Y. Deng, O. Simeone, and A. Nallanathan, ‘‘Online 
supervised learning for traffic load prediction in framed-ALOHA 
networks,’’ IEEE Commun. Lett., vol. 23, no. 10, pp. 1778–1782, Oct. 
2019. 

[8] Y.Ji,Y.Wu,D.Zhang,Y.Yuan,S.Liu,R.Zarei,andJ.He,‘‘Anovelflash 
P2P network traffic prediction algorithm based on ELMD and garch,’’ 
Int. J. Inf. Technol. Decis. Making, vol. 19, no. 1, pp. 127–141, Jan. 
2020. 

[9] C. Katris and S. Daskalaki, ‘‘Dynamic bandwidth allocation for video 
traffic using FARIMA-based forecasting models,’’ J. Netw. Syst. 
Manage., vol. 27, no. 1, pp. 39–65, Jan. 2019. 

[10] A. Sang and S.-Q. Li, ‘‘A predictability analysis of network traffic,’’ 
Comput. Netw., vol. 39, no. 4, pp. 329–345, Aug. 2002. 

[11] F. Xu, Y. Lin, and J. Huang, ‘‘Big data driven mobile traffic 
understanding and forecasting: A time series approach,’’ Services 
Comput., vol. 9, no. 5, pp. 796–805, Sep. 2016. 

[12] L. Nie, X. Wang, S. Wang, Z. Ning, M. S. Obaidat, B. Sadoun, and S. 
Li, ‘‘Network traffic prediction in industrial Internet of Things 
backbone networks: A multitask learning mechanism,’’ IEEE Trans. 
Ind. Informat., vol. 17, no. 10, pp. 7123–7132, Oct. 2021. 

[13] J. Beran, R. Sherman, M. S. Taqqu, and W. Willinger, ‘‘Long-range 
dependence in variable-bit-rate video traffic,’’ IEEE Trans. Commun., 
vol. 43, no. 2, pp. 1566–1579, Feb. 1995. 

[14] W.E.Leland,M.S.Taqqu,W.Willinger,andD.V.Wilson,‘‘Ontheself- 
similar nature of Ethernet traffic (extended version),’’ IEEE/ACM 
Trans. Netw., vol. 2, no. 1, pp. 1–15, Feb. 1994. 

[15] O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu, ‘‘Financial time 
series forecasting with deep learning : A systematic literature review: 
2005–2019,’’ Appl. Soft Comput., vol. 90, May 2020, Art. no. 106181. 

[16] S. Shastri, K. Singh, S. Kumar, P. Kour, and V. Mansotra, ‘‘Time series 
forecasting of COVID-19 using deep learning models: India-USA 
comparative case study,’’ Chaos, Solitons Fractals, vol. 140, Nov. 
2020, Art. no. 110227. 

[17] Z.Zhang,X.Li,andS.Yang,‘‘Short-termpredictionofsignificantwave 
height based on AR-SVR model,’’ Acta Energiae Solaris Sinica, vol. 
42, no. 7, pp. 15–20, Aug. 2021. 

[18] G.U.Yule,‘‘Onamethodofinvestigatingperiodicitiesindisturbedseries, 
with special reference to Wolfer’s sunspot numbers,’’ Philos. Trans. 
Roy. Soc. London A, Containing Papers Math. Phys. Character, vol. 
226, no. 1927, pp. 267–298, Apr. 1927. 

[19] Z.Duan,E.Sun,andY.Zhang,‘‘Thepredictionofnetworktrafficbased on 
ARMA,’’ J. China Acadewy Electoronics Inf. Technol., vol. 4, no. 4, 
pp. 352–356, Aug. 2009. 

[20] R.ZhangandC.Zhao,‘‘Applicationresearchonnetworktrafficprediction 
base on ARIMA,’’ Comput. Simul., vol. 28, no. 2, pp. 171–174, Feb. 
2011.  

[21] Y. Shu, Z. Jin, and L. L. Zhang, ‘‘Traffic prediction using FARIMA 
models,’’ in Proc. IEEE Int. Conf. Commun. Vancouver, BC, Canada, 
Jun. 1999, pp. 891–895. 

[22] H. Shin, H. Roth, and M. Gao, ‘‘Deep convolutional neural networks 
for computer-aided detection: CNN architectures, dataset 
characteristics and transfer learning,’’ IEEE Trans. Med. Imag., vol. 
35, no. 5, pp. 1285–1298, May 2016. 

[23] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, 
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using 
RNN encoder–decoder for statistical machine translation,’’ 2014, 
arXiv:1406.1078. 

[24] X.Chen,Y.Liu,andJ.Zhang,‘‘TrafficpredictionforInternetofThings 
through support vector regression model,’’ Internet Technol. Lett., vol. 
5, no. 3, p. 336, May 2022. 

[25] T. P. Oliveira, J. S. Barbar, and A. S. Soares, ‘‘Computer network 
traffic prediction: A comparison between traditional and deep learning 
neural networks,’’ Int. J. Big Data Intell., vol. 3, no. 1, pp. 28–37, 2016. 

[26] W. Zhao, Y. Gao, T. Ji, X. Wan, F. Ye, and G. Bai, ‘‘Deep temporal 
convolutional networks for short-term traffic flow forecasting,’’ IEEE 
Access, vol. 7, pp. 114496–114507, 2019. 

[27] S. Bai, J. Z. Kolter, and V. Koltun, ‘‘An empirical evaluation of generic 
convolutional and recurrent networks for sequence modeling,’’ 2018, 
arXiv:1803.01271. 

[28] Z. Wu and N. E. Huang, ‘‘Ensemble empirical mode decomposition: A 
noise-assisted data analysis method,’’ Adv. Adapt. Data Anal., vol. 1, 
no. 1, pp. 1–41, Jan. 2009. 

[29] K. Dominique and D. Zosso, ‘‘Variational mode decomposition,’’ 
IEEE Trans. Signal, vol. 62, no. 3, pp. 531–544, Feb. 2014. 

[30] Y. Zhao, Nurbol, and S. Whshour, ‘‘Prediction method of network 
traffic based on timing EEMD,’’ Comput. Simul., vol. 35, no. 11, pp. 
466–469, Nov. 2018. 

[31] Y. Li, B. Tang, and S. Jiao, ‘‘Optimized ship-radiated noise feature 
extraction approaches based on CEEMDAN and slope entropy,’’ 
Entropy, vol. 24, no. 9, p. 1265, Sep. 2022. 

[32] Y. Li, B. Tang, X. Jiang, and Y. Yi, ‘‘Bearing fault feature extraction 
method based on GA-VMD and center frequency,’’ Math. Problems 
Eng., vol. 2022, pp. 1–19, Jan. 2022. 

[33] M. Civera and C. Surace, ‘‘A comparative analysis of signal 
decomposition techniques for structural health monitoring on an 
experimental bench- mark,’’ Sensors, vol. 21, no. 5, p. 1825, Mar. 
2021. 

[34] Z. Li, L. Gao, W. Lu, D. Wang, H. Cao, and G. Zhang, ‘‘A novel noise 
suppression and artifact removal method of mechanomyography based 
on RLS, IGWO-VMD, and CEEMDAN,’’ J. Sensors, vol. 2022, Sep. 
2022, Art. no. 4239211. 

[35] Y. Li, B. Tang, and Y. Yi, ‘‘A novel complexity-based mode feature 
representation for feature extraction of ship-radiated noise using VMD 
and slope entropy,’’ Appl. Acoust., vol. 196, Jun. 2022, Art. no. 
108899. 

[36]  M.Li,Y.Wang,Z.Wang,andH.Zheng,‘‘Adeeplearningmethodbasedon 
an attention mechanism for wireless network traffic prediction,’’ Ad 
Hoc Netw., vol. 107, Oct. 2020, Art. no. 102258. 

[37] H. Xiong, J. Liu, and J. Wang, ‘‘Network traffic prediction based on 
neural network and autoregressive model,’’ J. Comput. Appl., vol. 41, 
pp. 180–184, Jun. 2021. 

[38] N. W. Branco, M. S. M. Cavalca, S. F. Stefenon, and V. R. Q. Leithardt, 
‘‘Wavelet LSTM for fault forecasting in electrical power grids,’’ 
Sensors, vol. 22, no. 21, p. 8323, Oct. 2022. 

[39] J. Bi, X. Zhang, and H. Yuan, ‘‘A hybrid prediction method for realistic 
network traffic with temporal convolutional network and LSTM,’’ 
IEEE Trans. Autom. Sci. Eng., vol. 99, no. 3, pp. 1–11, May 2021. 

[40] M. E. Torres, M. A. Colominas, G. Schlotthauer, and P. Flandrin, ‘‘A 
complete ensemble empirical mode decomposition with adaptive 



Page 216 Vol 14 Issue 05,May 2025 ISSN 2456 – 5083 

    

  

      

   

 

  

    

  

 

 

 

 

 

 

 

 

 

 

noise,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. 
(ICASSP), May 2011, pp. 4144–4147. 

[41] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, 
N.-C. Yen, C. C. Tung, and H. H. Liu, ‘‘The empirical mode 
decomposition and the Hilbert spectrum for nonlinear and non-
stationary time series analysis,’’ Proc. Roy. Soc. London A, Math., 
Phys. Eng. Sci., vol. 454, no. 1971, pp. 903–995, Mar. 1998. 

[42] F. Zhou, Z. Huang, and C. Zhang, ‘‘Carbon price forecasting based on 
CEEMDAN and LSTM,’’ Appl. Energy, vol. 311, Apr. 2022, Art. no. 
118601. 

[43] L. Yin and Y. Wu, ‘‘Traffic flow combination prediction model based 
on improved VMD-GAT-GRU,’’ J. Electron. Meas. Instrum., vol. 36, 
no. 7, pp. 62–72, Jul. 2022. 

[44] Y.Bin,Y.Yang,F.Shen,N.Xie,H.T.Shen,andX.Li,‘‘Describingvideo 
with attention-based bidirectional LSTM,’’ IEEE Trans. Cybern., vol. 
49, no. 7, pp. 2631–2641, Jul. 2019. 

[45] S. Zhou, C. Song, T. Wang, X. Pan, W. Chang, and L. Yang, ‘‘A short- 
term hybrid TCN-GRU prediction model of bike-sharing demand 
based on travel characteristics mining,’’ Entropy, vol. 24, no. 9, p. 
1193, Aug. 2022. 

 

 

 


