
www.ijiemr.org Volume number:01, Issue number:02 Page 102

Online Shortest Path Computation

*K.Saresh **A.Madhavi

*M.TECH student, Dept of CSE, VAAGDEVI COLLEGE OF ENGINEERING

**Assistant Professor, Dept of CSE, VAAGDEVI COLLEGE OF ENGINEERING

Abstract:

Online Shortest path computation using live traffic index in road networks aims at computing the

shortest path from source to destination using Live traffic index. The problem of finding the

shortest path between two intersections on a road map (the graph's vertices correspond to

intersections and the edges correspond to road segments, each weighted by the length of its road

segment) may be modeled by a special case of the shortest path problem in graphs. In this paper,

index transmission model along with Live traffic index technique is used. In this technique, first the

traffic provider collects the traffic data and transmits to the traffic server broadcaster. The traffic

server broadcaster indexes and optimizes the traffic data and broadcasts to the navigation client.

Graph partitioning and stochastic process are the new techniques used to optimize the index. The

fast query response time and short tune in cost at client side, small broadcast size and maintainence

time at server side are the extra features achieved in the system. We develop a new framework

called live traffic index (LTI) which enables drivers to quickly and effectively collect the live

traffic information on the broadcasting channel. An impressive result is that the driver can

compute/update their shortest path result by receiving only a small fraction of the index. Our

experimental study shows that LTI is robust to various parameters and it offers relatively short

tune-in cost (at client side), fast query response time (at client side), small broadcast size (at server

side), and light maintenance time (at server side) for online shortest path problem.

Keywords: Shortest Path, Air Index, Broadcasting.

I. INTRODUCTION

Nowadays, several online services provide

live traffic data (by analyzing collected data

from road sensors, traffic cameras, and crowd

sourcing techniques), such as Google-Map [9],

Navteq [10], INRIX Traffic Information

Provider [11], and TomTom NV [12], etc.

These systems can calculate the snapshot

shortest path queries based on current live

traffic data; however, they do not report routes

to drivers continuously due to high operating

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 103

costs. Answering the shortest paths on the live

traffic data can be viewed as a con-tinuous

monitoring problem in spatial databases,

which is termed online shortest paths

computation (OSP) in this work. To the best

of our knowledge, this problem has not

received much attention and the costs of

answering such continuous queries vary

hugely in different system architectures.

Suppose you would like to find the shortest

path between two intersections on a city map:

a starting point and a destination. Dijkstra's

algorithm initially marks the distance (from

the starting point) to every other intersection

on the map with infinity. This is done not to

imply there is an infinite distance, but to note

that those intersections have not yet been

visited; some variants of this method simply

leave the intersections' distances unlabeled.

Now, at each iteration, select the current

intersection. For the first iteration, the current

intersection will be the starting point, and the

distance to it (the intersection's label) will be

zero. For subsequent iterations (after the first),

the current intersection will be the closest

unvisited intersection to the starting point (this

will be easy to find).

From the current intersection, update the

distance to every unvisited intersection that is

directly connected to it. This is done by

determining the sum of the distance between

an unvisited intersection and the value of the

current intersection, and relabeling the

unvisited intersection with this value (the

sum), if it is less than its current value. In

effect, the intersection is relabeled if the path

to it through the current intersection is shorter

than the previously known paths. To facilitate

shortest path identification, in pencil, mark the

road with an arrow pointing to the relabeled

intersection if you label/relabel it, and erase

all others pointing to it. After you have

updated the distances to each neighboring

intersection, mark the current intersection as

visited, and select the unvisited intersection

with lowest distance (from the starting point)

– or the lowest label—as the current

intersection. Nodes marked as visited are

labeled with the shortest path from the starting

point to it and will not be revisited or returned

to. Continue this process of updating the

neighboring intersections with the shortest

distances, then marking the current

intersection as visited and moving onto the

closest unvisited intersection until you have

marked the destination as visited. Once you

have marked the destination as visited(as is

the case with any visited intersection) you

have determined the shortest path to it, from

the starting point, and can trace your way

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 104

back, following the arrows in reverse; in the

algorithm's implementations, this is usually

done (after the algorithm has reached the

destination node) by following the nodes'

parents from the destination node up to the

starting node; that's why we keep also track of

each node's parent. This algorithm makes no

attempt to direct "exploration" towards the

destination as one might expect. Rather, the

sole consideration in determining the next

"current" intersection is its distance from the

starting point. This algorithm therefore

expands outward from the starting point,

interactively considering every node that is

closer in terms of shortest path distance until it

reaches the destination. When understood in

this way, it is clear how the algorithm

necessarily finds the shortest path. However, it

may also reveal one of the algorithm's

weaknesses: its relative slowness in some

topologies. If one represents a

nondeterministic abstract machine as a graph

where vertices describe states and edges

describe possible transitions, shortest path

algorithms can be used to find an optimal

sequence of choices to reach a certain goal

state, or to establish lower bounds on the time

needed to reach a given state. For example, if

vertices represent the states of a puzzle like a

Rubik's Cube and each directed edge

corresponds to a single move or turn, shortest

path algorithms can be used to find a solution

that uses the minimum possible number of

moves.

In a networking or telecommunications

mindset, this shortest path problem is

sometimes called the min-delay path problem

and usually tied with a widest path problem.

For example, the algorithm may seek the

shortest (min-delay) widest path, or widest

shortest (min-delay) path. A more light-

hearted application is the games of "six

degrees of separation" that try to find the

shortest path in graphs like movie stars

appearing in the same film.

In a networking or telecommunications

mindset, this Other applications, often studied

in operations research, include plant and

facility layout, robotics, transportation, and

VLSI design. An alternative solution is to

broadcast live traffic data over wireless

network (e.g., 3G, LTE, Mobile WiMAX,

etc.). The navigation system receives the live

traffic data from the broadcast channel and

executes the computation locally (called raw

transmission model). The traffic data are

broad-casted by a sequence of packets for

each broadcast cycle. To answer shortest path

queries based on live traffic circumstances, the

navigation system must fetch those updated

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page

105

of live traffic updates. A new and promising

solution to the shortest path computation is to

broadcast an air index over the wireless

network (called index transmission model)

[17], [18]. The main advantages of this model

are that the net-work overhead is independent

of the number of clients and every client only

downloads a portion of the entire road map

according to the index information. For

instance, the proposed index in [17]

constitutes a set of pairwise mini-mum and

maximum traveling costs between every two

sub-partitions of the road map. However,

these methods only solve the scalability issue

for the number of clients but not for the

amount of live traffic updates. As reported in

[17], the re-computation time of the index

takes 2 hours for the San Francisco (CA) road

map. It is prohibitively expensive to update

the index for OSP, in order to keep up with

live traffic circumstances as shown in Fig.1

Fig. 1. Two alternative shortest paths in

Manhattan, NY.

II. SYSTEM PREPARATIONS

A. Performance Factors

The main performance factors involved in

OSP are: (i) tune-in cost (at client side), (ii)

broadcast size (at server side), and (iii)

maintenance time (at server side), and (iv)

query response time (at client side). In this

work, we prioritize the tune-in cost as the

main optimized factor since it affects the

duration of client receivers into active

mode and power consumption is essentially

determined by the tuning cost (i.e., number

of packets received) [17], [23]. In addition,

shortening the duration of active mode

enables the clients to receive more services

simultaneously by selective tuning [24].

These services may include providing live

weather information, delivering latest

promotions in surrounding area, and

monitoring avail-ability of parking slots at

packets for each broadcast cycle. However, as

we will analyze an example in Section 2.2, the

probability of a packet being affected by 1%

edge updates is 98.77%. This means that

clients almost fetch all broadcast packets in a

broadcast cycle. The main challenge on

answering live shortest paths is scalability, in

terms of the number of clients and the amount

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page

106

destination. If we minimize the tune-in cost

of one service, then we reserve more

resources for other services. The index

maintenance time and broadcast size relate

to the freshness of the live traffic

information. The maintenance time is the

time required to update the index according

to live traffic information. The broadcast

size is relevant to the latency of receiving

the latest index information. As the

freshness is one of our main design criteria,

we must provide reasonable costs for these

two factors. The last factor is the response

time at client side. Given a proper index

structure, the response time of shortest path

computation can be very fast (i.e., few

milliseconds on large road maps) which is

negligible compared to access latency for

current wireless network speed. The

computation also consumes power but their

effect is outweighed by communication. It

remains, however, an evaluated factor for

OSP.

Adaptation of Existing Approaches: In

this section, we briefly discuss the

applicability of the state-of-the-art shortest

path solutions on different trans-mission

models. As discussed in the introduction,

the result transmission model scales poorly

with respect to the number of clients. The

communication cost is proportional to the

number of clients (regardless of whether

the server transmits live traffic or result

paths to the clients). Thus, we omit this

model from the remaining discussion.

Raw Transmission Model: Under the raw

transmission model, the traffic data (i.e.,

edge weights) are broadcasted by a set of

packets for each broadcast cycle. Each

header stores the latest time stamp of the

packets, so that clients can decide which

packets have been updated, and only fetch

those updated packets in the current

broadcast cycle. Having downloaded the

raw traffic data from the broadcast channel,

the following methods either directly

calculate the shortest path or efficiently

maintain certain data structure for the

shortest path computation. Uninformed

search (e.g., Dijkstra’s algorithm) traverses

graph nodes in ascending order of their

distances from the source s, and eventually

discovers the shortest path to the

destination t. Bi-directional search (BD) [3]

reduces the search space by executing

Dijkstra’s algorithm simultaneously

forwards from s and backwards from t. As

to be discussed shortly, bi-directional

search can also be applied on some

advanced index structures. However, the

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page

107

response time is relatively high and the

clients may receive large amount of

irrelevant updates due to the transmission

model.

Goal directed approaches search towards

the target by filtering out the edges that

cannot possibly belong to the shortest path.

The filtering procedure requires some pre-

computed information. ALT [25] and arc

flags (AF) [16] are two representative

algorithms in this category. ALT makes use

of A_ search, landmarks, and triangle

inequality [17]. A few landmark nodes are

selected and the distances between each

landmark and every node are pre-

computed. These pre-computed distances

can be exploited to derive distance bounds

for A_ search on the graph. Delling and

Wagner [18] proposes a lazy update

paradigm for ALT (DALT) so that it can

tolerate certain extents of edge weights

changes on a dynamic graph. The distance

bounds derived from the pre-computed

information remain correct if no edge

weight becomes lower than the initial

weight used at the ALT construction. This

lazy update paradigm significantly reduces

the index maintenance cost. Another well

known goal directed approach is arc flags

that partitions the graph into m sub-graphs.

For each edge e, it stores a bitmap B where

is set to true if and only if a shortest path to

a node in the sub-graph i starts with e.

During the Dijkstra execution, it only

relaxes those edges for which the bitmap

flag of the target node’s sub-graph is true.

AF provides reasonable speed-ups, but

consume too much space for large road

networks. The dynamic updates of AF

(DAF) has been recently studied in [19].

However, the solution is not practical since

the cost of updating the bitmap flags is

exponential to the number of edge updates.

Dynamic shortest path tree (DSPT)

maintains a tree structure locally for

efficient shortest path retrieval. Chan and

Yang [12] discusses how to maintain a

correct shortest path tree rooted at s after

receive a set of edge weight updates to the

graph. Finding a shortest path from s to any

node is computed at time on the shortest

path tree. In their work, a simple dynamic

version of Dijkstra is pro-posed which can

outperform all competitors.

III. INDEX TRANSMISSION MODEL

The index transmission model enables

servers to broadcast an index instead of raw

traffic data. We review the state-of-the-art

indices for shortest path computation and

discuss their applicability on the index

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page

108

transmission model. Road map hierarchical

approaches try to exploit the hierarchical

structure to the road map network in a pre-

processing step, which can be used to

accelerate all subsequent queries. These

speed-up approaches include reach [4],

highway hierarchies (HH) [2][6],

contraction hierarchies (CH) [10], and

transit-node routing (TNR) [1]. Reach, HH,

and CH are based on shortcut techniques

[2][6], i.e., some paths in the original graph

are represented by some shortcut edges.

The shortcuts are identified out by

exploiting the hierarchical structure (e.g.,

node ordering) on the road map network.

To answer a query, a bi-directional search

is executed on the overlay graph that

constitutes of the shortcuts and some edges

in the original graph. As the shortcuts are

the only extra structure stored in the index,

the construction is relatively fast as

compared to other index approaches. TNR

is based on a simple observation that a

driving path only passes one of a few

important transit nodes. The length of the

shortest path ðs; tÞ that passes at least one

transit node is given all involved distances

can be directly looked up in the pre-

computed data structure. Note that if the

shortest path that passes no transit node,

then other shortest path algorithm is applied

instead. The hierarchical approaches can

provide very fast query time as reported in

[11]. However, the maintenance time could

be high as most of them have no efficient

approach to update the pre-computed data

structure. HH and CH can support dynamic

weight updates [7] but the solution is

limited to weight increasing cases. In [12],

a theoretical approach has been proposed to

update the overlay graphs, but the proposed

algorithms have not been shown to have

good practical performances in real-world

networks. Again, none of these approaches

supports index transmission model well

since the shortest path can only be

computed on a complete index.

IV. LTI OVERVIEW AND

OBJECTIVES

A. LTI Overview

A road network monitoring system

typically consists of a service provider, a

large number of mobile clients (e.g.,

vehicles), and a traffic provider (e.g.,

GoogleMap, NAV-TEQ, INRIX, etc.). Fig.

2 shows an architectural overview of

this system in the context of our live traffic

index frame-work. The traffic provider

collects the live traffic circumstances from

the traffic monitors via techniques like road

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page

109

sensors and traffic video analysis. The

service provider periodically receives live

traffic updates from the traffic provider and

broadcasts the live traffic index on radio or

wireless network (e.g., 3G, LTE, Mobile

WiMAX, etc.). When a mobile client

wishes to compute and monitor a shortest

path, it listens to the live traffic index and

reads the relevant portion of the index for

computing the shortest path live traffic

circumstances). Thus, we assume that the

graph structures are distributed to every

client in advance (e.g., by monthly updates

or at system boot-up) via typical

transmission protocol (i.e., HTTP and

FTP).

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page

110

In Fig. 2, we illustrate the components and

system flow in our LTI framework. The

components shaded by gray color are the core

of LTI. In order to provide live traffic

information, the server maintains (component

a) and broadcasts (component b) the index

according to the up-to-date traffic

circumstances. In order to compute the online

shortest path, a client listens to the live traffic

index, reads the relevant portions of the index

(component c), and computes the shortest

path (component d).

LTI Objectives: To optimize the

performance of the LTI components, our

solution should support the following

features.

Efficient Maintenance Strategy: Without

efficient maintenance strategy, long

maintenance time is needed at server side so

that the traffic information is no longer live.

This can reduce the maintenance time spent

at component a.

Light Index Overhead: The index size

must be con-trolled in a reasonable ratio to

the entire road map data. This reduces not

only the length of a broadcast cycle, but also

makes clients listen fewer packets in the

broadcast channel. This can save the

communication cost at components b and c.

Efficient Computation on a Portion of

Entire Index: This property enables clients

to compute shortest path on a portion of the

entire index. The computation at component

d gets improved since it is executed on a

smaller graph. This property also reduces

the amount of data received and energy

consumed at component c. Inspired by these

properties, LTI has relatively short tune-in

cost (at client side), fast query response time

(at client side), small broadcast size (at

server side), and light.

V. LTI TRANSMISSION

A. Broadcasting Scheme

The broadcasting model uses radio or

wireless network (e.g.,3G, LTE, Mobile

WiMAX) as the transmission medium.

When the server broadcasts a data set (i.e., a

―programme‖), all clients can listen to the

data set concur-rently. Thus, this

transmission model scales well independent

of the number of clients. A broadcasting

scheme is a protocol to be followed by the

server and the clients. The (1,m) interleaving

scheme [20] is one of the best broadcasting

schemes. Table 1 shows an example broad-

casting cycle with m ¼ 3 packets and the

entire data set contains six data items. First,

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page

111

the server partitions the data set into m

equisized data segments. Each packet

contains a header and a data segment, where

a header describes the broadcasting schedule

of all packets. In this example, the variables

i and n in each header represent the last

broad-casted item and the total number of

items. The server periodically broadcasts a

sequence of packets (called as a broadcast

cycle). We use a concrete example to

demonstrate how a client receives her data

from the broadcast channel. Suppose that a

client wishes to query for the data object o5.

First, the client tunes in the broadcast

channel and waits until the next header is

broadcasted. For instance, the client is

listening to the header of the first packet,

and finds out that the third packet contains

o5. In order to preserve energy, the client

sleeps until the broadcasting time of that

packet. Then, it wake-ups and reads the

requested data item from the packet. The

query performance can be measured by the

tuning time and the waiting time at the client

side. The tuning time is the time for reading

the packets. The waiting time is the time

from the start time to the termination time of

the query. In this broadcasting scheme, the

parameter m decides the tradeoff between

tune-in size and the over-head. A large m

favors small tune-in size whereas a small m

incurs small waiting time. Imielinski et al.

[20] suggests to set m to the square root of

the ratio of the data size to the index size.

VI. PUTTING ALL TOGETHER

We are now ready to present our complete

LTI frame-work, which integrates all

techniques been discussed. A client can

invoke Algorithm 2 in order to find the

shortest path from a source s to a destination

t. First, the client generates a search graph

Gq based on s (i.e., current location) and d.

When the client tunes-in the broadcast chan-

nel (cf. Section 5.2), it keeps listening until

it discovers a header segment (cf. Fig. 9).

After reading the header segment, it decides

the necessary segments (to be read) for

computing the shortest path. These issues

are addressed in Section 5.3. The client then

waits for those segments, reads them, and

update the weight of Gq.

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 112

Subsequently, Gq is used to compute the

shortest path in the client machine locally.

Note that Algorithm 2 is kept running in

order to provide online shortest path until

the client reaches to the destination. We

then discuss about the tasks to be

performed by the service provider, as

shown in Algorithm 3. The first step is

devoted to construct the live traffic index;

they are offline tasks to be executed once

only. The service provider builds the live

traffic index by partitioning the graph G

into a set of subgraphs fSGi g such that

they are ready for broadcasting. We

develop an effective graph partitioning

algorithm for minimizing the total size of

subgraphs and study a combinatorial

optimization for reducing the search space

of shortest path queries in Section 4.2. In

each broadcasting cycle, the server first

collects live traffic updates from the traffic

provider, updates the subgraphs fSGig

(discussed in Section 6), and eventually

broadcasts them.

VII. CONCLUSION

In this paper we studied online shortest

path computation; the shortest path result

is computed/updated based on the live

traffic circumstances. We carefully

analyze the existing work and discuss their

inapplicability to the problem (due to their

prohibitive maintenance time and large

transmission overhead). To address the

problem, we suggest a promising

architecture that broadcasts the index on

the air. We first identify an important

feature of the hierarchical index structure

which enables us to compute shortest path

on a small portion of index. This important

feature is thoroughly used in our solution,

LTI. Our experiments confirm that LTI is

a Pareto optimal solution in terms of four

performance factors for online shortest

path computation. In the future, we will

extend our solution on time dependent

networks. This is a very interesting topic

since the decision of a shortest path

depends not only on current traffic data but

also based on the predicted traffic

circumstances.

VIII. REFERENCES

[1]H. Bast, S. Funke, D. Matijevic, P.

Sanders, and D. Schultes, ―In Transit to

Constant Time Shortest-Path Queries in

Road Networks,‖ Proc. Workshop

Algorithm Eng. and Experiments

(ALENEX), 2007.

[2]P. Sanders and D. Schultes,

―Engineering Highway Hierarchies,‖

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 113

Proc. 14th Conf. Ann. European Symp.

(ESA), pp. 804-816, 2006.

[3]G. Dantzig, Linear Programming and

Extensions, series Rand Cor-poration

Research Study Princeton Univ. Press,

1963.

[4]R.J. Gutman, ―Reach-Based Routing:

A New Approach to Shortest Path

Algorithms Optimized for Road

Networks,‖ Proc. Sixth Workshop

Algorithm Eng. and Experiments and the

First Workshop Analytic Algorithmics and

Combinatorics (ALENEX/ANALC), pp.

100-111, 2004.

[5]B. Jiang, ―I/O-Efficiency of Shortest

Path Algorithms: An Analy-sis,‖ Proc.

Eight Int’l Conf. Data Eng. (ICDE), pp.

12-19, 1992.

[6]P. Sanders and D. Schultes, ―Highway

Hierarchies Hasten Exact Shortest Path

Queries,‖ Proc. 13th Ann. European Conf.

Algorithms (ESA), pp. 568-579, 2005.

[7]D. Schultes and P. Sanders, ―Dynamic

Highway-Node Routing,‖ Proc. Sixth Int’l

Conf. Experimental Algorithms (WEA),

pp. 66-79, 2007.

[8]F. Zhan and C. Noon, ―Shortest Path

Algorithms: An Evaluation Using Real

Road Networks,‖ Transportation Science,

vol. 32, no. 1, 65-73, 1998.

[9]―Google Maps,‖

http://maps.google.com, 2014.

[10]―NAVTEQ Maps and Traffic,‖

http://www.navteq.com, 2014.

[11]―INRIX Inc. Traffic Information

Provider,‖ http://www.inrix. com, 2014.

[12]―TomTom NV,‖

http://www.tomtom.com, 2014.

[13]―Cisco Visual Networking Index:

Global Mobile Data Traffic Fore-cast

Update, 2010-2015,‖ 2011.

[14]D. Stewart, ―Economics of Wireless

Means Data Prices Bound to Rise,‖ The

Global and Mail, 2011.

[15]W.-S. Ku, R. Zimmermann, and H.

Wang, ―Location-Based Spatial Query

Processing in Wireless Broadcast

Environments,‖ IEEE Trans. Mobile

Computing, vol. 7, no. 6, pp. 778-791,

June 2008.

[16]N. Malviya, S. Madden, and A.

Bhattacharya, ―A Continuous Query

System for Dynamic Route Planning,‖

Proc. IEEE 27th Int’l Conf Data Eng.

(ICDE), pp. 792-803, 2011.

[17]G. Kellaris and K. Mouratidis,

―Shortest Path Computation on Air

Indexes,‖ Proc. VLDB Endowment, vol. 3,

no. 1, pp. 741-757, 2010.

http://www.ijiemr.org/
http://maps.google.com/
http://www.navteq.com/
http://www.tomtom.com/

www.ijiemr.org Volume number:01, Issue number:02 Page 114

[18]Y. Jing, C. Chen, W. Sun, B. Zheng,

L. Liu, and C. Tu, ―Energy-Efficient

Shortest Path Query Processing on Air,‖

Proc. 19th ACM SIGSPATIAL Int’l Conf.

Advances in Geographic Information

Systems (GIS), pp. 393-396, 2011.

[19]R. Goldman, N. Shivakumar, S.

Venkatasubramanian, and H. Garcia-

Molina, ―Proximity Search in Databases,‖

Proc. Int’l Conf. Very Large Databases

(VLDB), pp. 26-37, 1998.

[20]N. Jing, Y.-W. Huang, and E.A.

Rundensteiner, ―Hierarchical Encoded

Path Views for Path Query Processing: An

Optimal Model and Its Performance

Evaluation,‖ IEEE Trans. Knowledge and

Data Eng., vol. 10, no. 3, pp. 409-432,

May 1998.

[21]S. Jung and S. Pramanik, ―An

Efficient Path Computation Model for

Hierarchically Structured Topographical

Road Maps,‖ IEEE Trans. Knowledge and

Data Eng., vol. 14, no. 5, pp. 1029-1046,

Sept. 2002.

AUTHOR 1 :-

*K.Saresh completed his B tech in

vaagdevi engineering college in 201 and

pursuing M-Tech in Vaagdevi College of

Engineering

AUTHOR 2:-

**A.Madhavi is working as Assistant

Professor in Dept of CSE, Vaagdevi

College of Engineering.

http://www.ijiemr.org/

