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Abstract: 

Online Shortest path computation using live traffic index in road networks aims at computing the 

shortest path from source to destination using Live traffic index. The problem of finding the 

shortest path between two intersections on a road map (the graph's vertices correspond to 

intersections and the edges correspond to road segments, each weighted by the length of its road 

segment) may be modeled by a special case of the shortest path problem in graphs. In this paper, 

index transmission model along with Live traffic index technique is used. In this technique, first the 

traffic provider collects the traffic data and transmits to the traffic server broadcaster. The traffic 

server broadcaster indexes and optimizes the traffic data and broadcasts to the navigation client. 

Graph partitioning and stochastic process are the new techniques used to optimize the index. The 

fast query response time and short tune in cost at client side, small broadcast size and maintainence 

time at server side are the extra features achieved in the system. We develop a new framework 

called live traffic index (LTI) which enables drivers to quickly and effectively collect the live 

traffic information on the broadcasting channel. An impressive result is that the driver can 

compute/update their shortest path result by receiving only a small fraction of the index. Our 

experimental study shows that LTI is robust to various parameters and it offers relatively short 

tune-in cost (at client side), fast query response time (at client side), small broadcast size (at server 

side), and light maintenance time (at server side) for online shortest path problem. 

Keywords: Shortest Path, Air Index, Broadcasting. 

 

I. INTRODUCTION 

 

Nowadays, several online services provide 

live traffic data (by analyzing collected data 

from road sensors, traffic cameras, and crowd 

sourcing techniques), such as Google-Map [9], 

Navteq [10], INRIX Traffic Information 

 

Provider [11], and TomTom NV [12], etc. 

These systems can calculate the snapshot 

shortest path queries based on current live 

traffic data; however, they do not report routes 

to drivers continuously due to high operating 

http://www.ijiemr.org/


www.ijiemr.org Volume number:01, Issue number:02 Page 103 

 

 

 

costs. Answering the shortest paths on the live 

traffic data can be viewed as a con-tinuous 

monitoring problem in spatial databases, 

which is termed online shortest paths 

computation (OSP) in this work. To the best 

of our knowledge, this problem has not 

received much attention and the costs of 

answering such continuous queries vary 

hugely in different system architectures. 

Suppose you would like to find the shortest 

path between two intersections on a city map: 

a starting point and a destination. Dijkstra's 

algorithm initially marks the distance (from 

the starting point) to every other intersection 

on the map with infinity. This is done not to 

imply there is an infinite distance, but to note 

that those intersections have not yet been 

visited; some variants of this method simply 

leave the intersections' distances unlabeled. 

Now, at each iteration, select the current 

intersection. For the first iteration, the current 

intersection will be the starting point, and the 

distance to it (the intersection's label) will be 

zero. For subsequent iterations (after the first), 

the current intersection will be the closest 

unvisited intersection to the starting point (this 

will be easy to find). 

From the current intersection, update the 

distance to every unvisited intersection that is 

directly connected to it. This is done by 

determining the sum of the distance between 

an unvisited intersection and the value of the 

current intersection, and relabeling the 

unvisited intersection with this value (the 

sum), if it is less than its current value. In 

effect, the intersection is relabeled if the path 

to it through the current intersection is shorter 

than the previously known paths. To facilitate 

shortest path identification, in pencil, mark the 

road with an arrow pointing to the relabeled 

intersection if you label/relabel it, and erase 

all others pointing to it. After you have 

updated the distances to each neighboring 

intersection, mark the current intersection as 

visited, and select the unvisited intersection 

with lowest distance (from the starting point) 

– or the lowest label—as the current 

intersection. Nodes marked as visited are 

labeled with the shortest path from the starting 

point to it and will not be revisited or returned 

to. Continue this process of updating the 

neighboring intersections with the shortest 

distances, then marking the current 

intersection as visited and moving onto the 

closest unvisited intersection until you have 

marked the destination as visited. Once you 

have marked the destination as visited(as is 

the case with any visited intersection) you 

have determined the shortest path to it, from 

the starting point, and can trace your way 
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back, following the arrows in reverse; in the 

algorithm's implementations, this is usually 

done (after the algorithm has reached the 

destination node) by following the nodes' 

parents from the destination node up to the 

starting node; that's why we keep also track of 

each node's parent. This algorithm makes no 

attempt to direct "exploration" towards the 

destination as one might expect. Rather, the 

sole consideration in determining the next 

"current" intersection is its distance from the 

starting point. This algorithm therefore 

expands outward from the starting point, 

interactively considering every node that is 

closer in terms of shortest path distance until it 

reaches the destination. When understood in 

this way, it is clear how the algorithm 

necessarily finds the shortest path. However, it 

may also reveal one of the algorithm's 

weaknesses: its relative slowness in some 

topologies. If one represents a 

nondeterministic abstract machine as a graph 

where vertices describe states and edges 

describe possible transitions, shortest path 

algorithms can be used to find an optimal 

sequence of choices to reach a certain goal 

state, or to establish lower bounds on the time 

needed to reach a given state. For example, if 

vertices represent the states of a puzzle like a 

Rubik's Cube and each directed edge 

corresponds to a single move or turn, shortest 

path algorithms can be used to find a solution 

that uses the minimum possible number of 

moves. 

In a networking or telecommunications 

mindset, this shortest path problem is 

sometimes called the min-delay path problem 

and usually tied with a widest path problem. 

For example, the algorithm may seek the 

shortest (min-delay) widest path, or widest 

shortest (min-delay) path. A more light- 

hearted application is the games of "six 

degrees of separation" that try to find the 

shortest path in graphs like movie stars 

appearing in the same film. 

In a networking or telecommunications 

mindset, this Other applications, often studied 

in operations research, include plant and 

facility layout, robotics, transportation, and 

VLSI design. An alternative solution is to 

broadcast live traffic data over wireless 

network (e.g., 3G, LTE, Mobile WiMAX, 

etc.). The navigation system receives the live 

traffic data from the broadcast channel and 

executes the computation locally (called raw 

transmission model). The traffic data are 

broad-casted by a sequence of packets for 

each broadcast cycle. To answer shortest path 

queries based on live traffic circumstances, the 

navigation system must fetch those updated 
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of live traffic updates. A new and promising 

solution to the shortest path computation is to 

broadcast an air index over the wireless 

network (called index transmission model) 

[17], [18]. The main advantages of this model 

are that the net-work overhead is independent 

of the number of clients and every client only 

downloads a portion of the entire road map 

according to the index information. For 

instance, the proposed index in [17] 

constitutes a set of pairwise mini-mum and 

maximum traveling costs between every two 

sub-partitions of the road map. However, 

these methods only solve the scalability issue 

for the number of clients but not for the 

amount of live traffic updates. As reported in 

[17], the re-computation time of the index 

takes 2 hours for the San Francisco (CA) road 

map. It is prohibitively expensive to update 

the index for OSP, in order to keep up with 

live traffic circumstances as shown in Fig.1 

 

Fig. 1. Two alternative shortest paths in 

Manhattan, NY. 

II. SYSTEM PREPARATIONS 

A. Performance Factors 

The main performance factors involved in 

OSP are: (i) tune-in cost (at client side), (ii) 

broadcast size (at server side), and (iii) 

maintenance time (at server side), and (iv) 

query response time (at client side). In this 

work, we prioritize the tune-in cost as the 

main optimized factor since it affects the 

duration of client receivers into active 

mode and power consumption is essentially 

determined by the tuning cost (i.e., number 

of packets received) [17], [23]. In addition, 

shortening the duration of active mode 

enables the clients to receive more services 

simultaneously by selective tuning [24]. 

These services may include providing live 

weather information, delivering latest 

promotions  in  surrounding  area,  and 

monitoring avail-ability of parking slots at 

 

 

 

 

 

 

 

 

 

 

packets for each broadcast cycle. However, as 

we will analyze an example in Section 2.2, the 

probability of a packet being affected by 1% 

edge updates is 98.77%. This means that 

clients almost fetch all broadcast packets in a 

broadcast cycle. The main challenge on 

answering live shortest paths is scalability, in 

terms of the number of clients and the amount 
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destination. If we minimize the tune-in cost 

of one service, then we reserve more 

resources for other services. The index 

maintenance time and broadcast size relate 

to the freshness of the live traffic 

information. The maintenance time is the 

time required to update the index according 

to live traffic information. The broadcast 

size is relevant to the latency of receiving 

the latest index information. As the 

freshness is one of our main design criteria, 

we must provide reasonable costs for these 

two factors. The last factor is the response 

time at client side. Given a proper index 

structure, the response time of shortest path 

computation can be very fast (i.e., few 

milliseconds on large road maps) which is 

negligible compared to access latency for 

current wireless network speed. The 

computation also consumes power but their 

effect is outweighed by communication. It 

remains, however, an evaluated factor for 

OSP. 

Adaptation of Existing Approaches: In 

this section, we briefly discuss the 

applicability of the state-of-the-art shortest 

path solutions on different trans-mission 

models. As discussed in the introduction, 

the result transmission model scales poorly 

with respect to the number of clients. The 

communication cost is proportional to the 

number of clients (regardless of whether 

the server transmits live traffic or result 

paths to the clients). Thus, we omit this 

model from the remaining discussion. 

Raw Transmission Model: Under the raw 

transmission model, the traffic data (i.e., 

edge weights) are broadcasted by a set of 

packets for each broadcast cycle. Each 

header stores the latest time stamp of the 

packets, so that clients can decide which 

packets have been updated, and only fetch 

those updated packets in the current 

broadcast cycle. Having downloaded the 

raw traffic data from the broadcast channel, 

the following methods either directly 

calculate the shortest path or efficiently 

maintain certain data structure for the 

shortest path computation. Uninformed 

search (e.g., Dijkstra’s algorithm) traverses 

graph nodes in ascending order of their 

distances from the source s, and eventually 

discovers the shortest path to the 

destination t. Bi-directional search (BD) [3] 

reduces the search space by executing 

Dijkstra’s algorithm simultaneously 

forwards from s and backwards from t. As 

to be discussed shortly, bi-directional 

search can also be applied on some 

advanced index structures. However, the 
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response time is relatively high and the 

clients may receive large amount of 

irrelevant updates due to the transmission 

model. 

Goal directed approaches search towards 

the target by filtering out the edges that 

cannot possibly belong to the shortest path. 

The filtering procedure requires some pre- 

computed information. ALT [25] and arc 

flags (AF) [16] are two representative 

algorithms in this category. ALT makes use 

of A_ search, landmarks, and triangle 

inequality [17]. A few landmark nodes are 

selected and the distances between each 

landmark and every node are pre- 

computed. These pre-computed distances 

can be exploited to derive distance bounds 

for A_ search on the graph. Delling and 

Wagner [18] proposes a lazy update 

paradigm for ALT (DALT) so that it can 

tolerate certain extents of edge weights 

changes on a dynamic graph. The distance 

bounds derived from the pre-computed 

information remain correct if no edge 

weight becomes lower than the initial 

weight used at the ALT construction. This 

lazy update paradigm significantly reduces 

the index maintenance cost. Another well 

known goal directed approach is arc flags 

that partitions the graph into m sub-graphs. 

For each edge e, it stores a bitmap B where 

is set to true if and only if a shortest path to 

a node in the sub-graph i starts with e. 

During the Dijkstra execution, it only 

relaxes those edges for which the bitmap 

flag of the target node’s sub-graph is true. 

AF provides reasonable speed-ups, but 

consume too much space for large road 

networks. The dynamic updates of AF 

(DAF) has been recently studied in [19]. 

However, the solution is not practical since 

the cost of updating the bitmap flags is 

exponential to the number of edge updates. 

Dynamic shortest path tree (DSPT) 

maintains a tree structure locally for 

efficient shortest path retrieval. Chan and 

Yang [12] discusses how to maintain a 

correct shortest path tree rooted at s after 

receive a set of edge weight updates to the 

graph. Finding a shortest path from s to any 

node is computed at time on the shortest 

path tree. In their work, a simple dynamic 

version of Dijkstra is pro-posed which can 

outperform all competitors. 

III. INDEX TRANSMISSION MODEL 

The index transmission model enables 

servers to broadcast an index instead of raw 

traffic data. We review the state-of-the-art 

indices for shortest path computation and 

discuss their applicability on the index 
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transmission model. Road map hierarchical 

approaches try to exploit the hierarchical 

structure to the road map network in a pre- 

processing step, which can be used to 

accelerate all subsequent queries. These 

speed-up approaches include reach [4], 

highway hierarchies (HH) [2][6], 

contraction hierarchies (CH) [10], and 

transit-node routing (TNR) [1]. Reach, HH, 

and CH are based on shortcut techniques 

[2][6], i.e., some paths in the original graph 

are represented by some shortcut edges. 

The shortcuts are identified out by 

exploiting the hierarchical structure (e.g., 

node ordering) on the road map network. 

To answer a query, a bi-directional search 

is executed on the overlay graph that 

constitutes of the shortcuts and some edges 

in the original graph. As the shortcuts are 

the only extra structure stored in the index, 

the construction is relatively fast as 

compared to other index approaches. TNR 

is based on a simple observation that a 

driving path only passes one of a few 

important transit nodes. The length of the 

shortest path ðs; tÞ that passes at least one 

transit node is given all involved distances 

can be directly looked up in the pre- 

computed data structure. Note that if the 

shortest path that passes no transit node, 

then other shortest path algorithm is applied 

instead. The hierarchical approaches can 

provide very fast query time as reported in 

[11]. However, the maintenance time could 

be high as most of them have no efficient 

approach to update the pre-computed data 

structure. HH and CH can support dynamic 

weight updates [7] but the solution is 

limited to weight increasing cases. In [12], 

a theoretical approach has been proposed to 

update the overlay graphs, but the proposed 

algorithms have not been shown to have 

good practical performances in real-world 

networks. Again, none of these approaches 

supports index transmission model well 

since the shortest path can only be 

computed on a complete index. 

IV. LTI OVERVIEW AND 

OBJECTIVES 

A. LTI Overview 

A road network monitoring system 

typically consists of a service provider, a 

large number of mobile clients (e.g., 

vehicles), and a traffic provider (e.g., 

GoogleMap, NAV-TEQ, INRIX, etc.). Fig. 

2 shows an architectural overview of 

this system in the context of our live traffic 

index frame-work. The traffic provider 

collects the live traffic circumstances from 

the traffic monitors via techniques like road 
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sensors and traffic video analysis. The 

service provider periodically receives live 

traffic updates from the traffic provider and 

broadcasts the live traffic index on radio or 

wireless network (e.g., 3G, LTE, Mobile 

WiMAX, etc.). When a mobile client 

wishes to compute and monitor a shortest 

path, it listens to the live traffic index and 

reads the relevant portion of the index for 

computing the shortest path live traffic 

circumstances). Thus, we assume that the 

graph structures are distributed to every 

client in advance (e.g., by monthly updates 

or at system boot-up) via typical 

transmission protocol (i.e., HTTP and 

FTP). 
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In Fig. 2, we illustrate the components and 

system flow in our LTI framework. The 

components shaded by gray color are the core 

of LTI. In order to provide live traffic 

information, the server maintains (component 

a) and broadcasts (component b) the index 

according to the up-to-date traffic 

circumstances. In order to compute the online 

shortest path, a client listens to the live traffic 

index, reads the relevant portions of the index 

(component c), and computes the shortest 

path (component d). 

LTI Objectives: To optimize the 

performance of the LTI components, our 

solution should support the following 

features. 

Efficient Maintenance Strategy: Without 

efficient maintenance strategy, long 

maintenance time is needed at server side so 

that the traffic information is no longer live. 

This can reduce the maintenance time spent 

at component a. 

Light Index Overhead: The index size 

must be con-trolled in a reasonable ratio to 

the entire road map data. This reduces not 

only the length of a broadcast cycle, but also 

makes clients listen fewer packets in the 

broadcast channel. This can save the 

communication cost at components b and c. 

 

Efficient Computation on a Portion of 

Entire Index: This property enables clients 

to compute shortest path on a portion of the 

entire index. The computation at component 

d gets improved since it is executed on a 

smaller graph. This property also reduces 

the amount of data received and energy 

consumed at component c. Inspired by these 

properties, LTI has relatively short tune-in 

cost (at client side), fast query response time 

(at client side), small broadcast size (at 

server side), and light. 

V. LTI TRANSMISSION 

A. Broadcasting Scheme 

The broadcasting model uses radio or 

wireless network (e.g.,3G, LTE, Mobile 

WiMAX) as the transmission medium. 

When the server broadcasts a data set (i.e., a 

―programme‖), all clients can listen to the 

data set concur-rently. Thus, this 

transmission model scales well independent 

of the number of clients. A broadcasting 

scheme is a protocol to be followed by the 

server and the clients. The (1,m) interleaving 

scheme [20] is one of the best broadcasting 

schemes. Table 1 shows an example broad- 

casting cycle with m ¼ 3 packets and the 

entire data set contains six data items. First, 
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the server partitions the data set into m 

equisized data segments. Each packet 

contains a header and a data segment, where 

a header describes the broadcasting schedule 

of all packets. In this example, the variables 

i and n in each header represent the last 

broad-casted item and the total number of 

items. The server periodically broadcasts a 

sequence of packets (called as a broadcast 

cycle). We use a concrete example to 

demonstrate how a client receives her data 

from the broadcast channel. Suppose that a 

client wishes to query for the data object o5. 

First, the client tunes in the broadcast 

channel and waits until the next header is 

broadcasted. For instance, the client is 

listening to the header of the first packet, 

and finds out that the third packet contains 

o5. In order to preserve energy, the client 

sleeps until the broadcasting time of that 

packet. Then, it wake-ups and reads the 

requested data item from the packet. The 

query performance can be measured by the 

tuning time and the waiting time at the client 

side. The tuning time is the time for reading 

the packets. The waiting time is the time 

from the start time to the termination time of 

the query. In this broadcasting scheme, the 

parameter m decides the tradeoff between 

tune-in size and the over-head. A large m 

favors small tune-in size whereas a small m 

incurs small waiting time. Imielinski et al. 

[20] suggests to set m to the square root of 

the ratio of the data size to the index size. 

VI. PUTTING ALL TOGETHER 

We are now ready to present our complete 

LTI frame-work, which integrates all 

techniques been discussed. A client can 

invoke Algorithm 2 in order to find the 

shortest path from a source s to a destination 

t. First, the client generates a search graph 

Gq based on s (i.e., current location) and d. 

When the client tunes-in the broadcast chan- 

nel (cf. Section 5.2), it keeps listening until 

it discovers a header segment (cf. Fig. 9). 

After reading the header segment, it decides 

the necessary segments (to be read) for 

computing the shortest path. These issues 

are addressed in Section 5.3. The client then 

waits for those segments, reads them, and 

update the weight of Gq. 
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Subsequently, Gq is used to compute the 

shortest path in the client machine locally. 

Note that Algorithm 2 is kept running in 

order to provide online shortest path until 

the client reaches to the destination. We 

then discuss about the tasks to be 

performed by the service provider, as 

shown in Algorithm 3. The first step is 

devoted to construct the live traffic index; 

they are offline tasks to be executed once 

only. The service provider builds the live 

traffic index by partitioning the graph G 

into a set of subgraphs fSGi g such that 

they are ready for broadcasting. We 

develop an effective graph partitioning 

algorithm for minimizing the total size of 

subgraphs and study a combinatorial 

optimization for reducing the search space 

of shortest path queries in Section 4.2. In 

each broadcasting cycle, the server first 

collects live traffic updates from the traffic 

provider, updates the subgraphs fSGig 

(discussed in Section 6), and eventually 

broadcasts them. 

VII. CONCLUSION 

In this paper we studied online shortest 

path computation; the shortest path result 

is computed/updated based on the live 

traffic circumstances. We carefully 

analyze the existing work and discuss their 

inapplicability to the problem (due to their 

prohibitive maintenance time and large 

transmission overhead). To address the 

problem, we suggest a promising 

architecture that broadcasts the index on 

the air. We first identify an important 

feature of the hierarchical index structure 

which enables us to compute shortest path 

on a small portion of index. This important 

feature is thoroughly used in our solution, 

LTI. Our experiments confirm that LTI is 

a Pareto optimal solution in terms of four 

performance factors for online shortest 

path computation. In the future, we will 

extend our solution on time dependent 

networks. This is a very interesting topic 

since the decision of a shortest path 

depends not only on current traffic data but 

also based on the predicted traffic 

circumstances. 
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