
Page 730 

 

Vol 14 Issue 5, May2025 ISSN 2456 – 5083 

  
        
    
 
 
 

 

 
 

A Federated Learning Framework for Privacy-Preserving and  

Explainable AI in Chronic Heart Failure Detection and Management 

Ms Sara Tabassum 
Ph.D Research Scholar  

Department of Computer Science and Engineering  

B.E.S.T. Innovation University, Andhra Pradesh  

Dr.P.Senthilkumar  
Professor, Department of Computer Science and Engineering 

Shadan Women`s College of Engineering and Technology Khairatabad, Hyderabad 
psenthilkumarshadan@gmail.com, saratabassum043@gmail.com 

Abstract  

This paper presents an innovative Federated Learning (FL) framework designed for  

privacy-preserving and explainable AI for the detection and management of Chronic Heart  Failure 

(CHF). Unlike traditional centralized methods, this system functions across multiple  clinical 

institutions without sharing raw data and integrating multimodal inputs (e.g., ECGs,  

phonocardiograms, biomarkers, and medical imaging) through secure CNN-LSTM models  

enhanced with attention mechanisms. The framework includes a comprehensive Federated  

Explainable AI (FedXAI) component that utilizes various interpretability techniques: SHAP for  

quantifying feature importance, LIME for explaining individual predictions, Class Activation  

Maps for highlighting critical image regions, and Decision Trees for transparent logical  reasoning. 

Strong privacy protection is ensured through differential privacy and homomorphic  encryption, 

maintaining HIPAA and GDPR compliance, whereas federated fairness constraints  reduce 

demographic and institutional biases. The system employs reinforcement learning to  optimize 

personalized therapy with real-time responsiveness (latency less than 200ms) and  supports 

blockchain-secured model training. This scalable architecture not only significantly  improves ECG 

classification and remote monitoring but also facilitates global multi-center  collaboration without 

compromising data security. Future directions include integrating wearable  devices and developing 

policy frameworks for equitable AI healthcare access, representing a  paradigm shift toward ethical, 

collaborative, and clinically effective cardiovascular AI that  upholds patient privacy while 

promoting inclusive healthcare innovations.  

Keywords: Chronic Heart Failure (CHF), Explainable AI (XAI), SHAP, LIME, Class Activation  
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Maps (CAMs), Decision Trees, Integrated Gradients, Federated Explainable AI (FedXAI) 

1. Introduction  

Chronic Heart Failure (CHF) is an escalating global health issue that affects over 64  million 

individuals worldwide, and is responsible for 10% of all hospital admissions in  developed 

countries. Although AI has shown transformative potential in managing CHF, from  early detection 

through multimodal data integration (ECGs, biomarkers, and echocardiography)  to personalized 

treatment optimization, its clinical adoption encounters significant obstacles.  Strict data privacy 

regulations (HIPAA, GDPR), institutional data silos, and the "black-box"  nature of deep learning 

models create a paradox: healthcare systems that could most benefit from  AI often struggle to 

utilize it effectively due to ethical, legal, and technical constraints.  Traditional centralized AI 

approaches, which require raw data aggregation, overcome these  challenges by exposing sensitive 

patient information to security risks and failing to address  inherent biases in single-center datasets. 

Federated Learning (FL) has emerged as a  groundbreaking solution to this dilemma, enabling 

collaborative model training across  decentralized institutions without data sharing. By keeping 

patient data at its source and  exchanging encrypted model updates, FL fundamentally redefines AI 

deployment in healthcare [1]. This distributed approach not only preserves privacy by design, but 

also fosters more robust,  generalizable models by incorporating diverse patient populations across 

geographies and  demographics. Recent advances have demonstrated FL's efficacy of FL in 

cardiovascular  applications, from arrhythmia detection to mortality prediction, achieving an 

accuracy  comparable to centralized methods while maintaining strict privacy guarantees.   

However, the existing implementations have yet to fully address three critical needs for  

CHF care: (1) seamless integration of heterogeneous data modalities, (2) clinically meaningful  

model interpretability, and (3) real-time adaptive therapy optimization. This study presents a  

sophisticated FL framework tailored for CHF management, featuring four significant  innovations. 

Initially, we created a multimodal architecture that integrates phonocardiograms,  biomarker trends, 

and imaging characteristics using privacy-preserving neural networks  enhanced by attention 

mechanisms. Second, we introduce Federated Explainable AI (FedXAI),  which facilitates 

localized model interpretation while safeguarding data privacy, an essential  development for 

clinician acceptance. FedXAI incorporates various interpretability methods such  as SHapley 

Additive explanations (SHAP) for assessing feature significance and Local  Interpretable Model-
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agnostic Explanations (LIME) to elucidate individual predictions. Third, we  incorporate 

reinforcement learning to enable dynamic treatment customization within the FL  framework, 

ensuring sub-200ms latency suitable for practical clinical applications. Finally, our  system includes 

regulatory-compliant protections such as homomorphic encryption and federated  

fairness constraints, establishing the first comprehensive FL solution prepared for multicenter  

trials [2, 3].  

2. Literature Survey  

Chronic Heart Failure (CHF) is a major global health issue that affects over 64 million  

individuals worldwide and contributes to approximately 10% of hospital admissions in  developed 

countries. The use of artificial intelligence in managing CHF has shown significant  potential, 

especially in early detection, by integrating various data types, such as  electrocardiograms, 

biomarkers, and echocardiography. Despite this promise, the clinical  implementation of AI 

encounters major challenges owing to stringent data privacy laws such as  HIPAA and GDPR, 

institutional data silos that hinder effective data sharing, and the "black-box"  nature of deep 

learning models that limit their interpretability. Traditional centralized AI  methods worsen these 

problems by necessitating the aggregation of raw data, which not only  poses security risks for 

sensitive patient information, but also fails to address biases inherent in  single-center datasets. 

These challenges create a paradox in which healthcare systems that could  greatly benefit from AI 

innovations are often unable to utilize them effectively owing to a mix of  ethical, legal, and 

technical barriers. As the global prevalence of CHF continues to increase,  there is an urgent need 

for AI solutions that are privacy-preserving, interpretable, and unbiased.  Federated Learning offers 

a revolutionary solution to the conflict between data privacy and AI  progress in health care. By 

allowing collaborative model training across decentralized  institutions without direct data sharing, 

FL fundamentally transforms AI deployment in health  care environments. This distributed method 

inherently preserves privacy by keeping patient data  secure at its source while exchanging 

encrypted model updates among participating institutions.  In addition to privacy advantages, FL 

promotes the development of more robust and  generalizable models by incorporating diverse 

patient populations across geographic and  demographic areas. Recent advancements have shown 

FL's effectiveness of FL in various  cardiovascular applications, from detecting arrhythmias to 
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predicting mortality, achieving  accuracy comparable to centralized methods while maintaining 

strict privacy standards.  However, current implementations have yet to fully address three critical 

needs specific to  comprehensive CHF care: seamless integration of diverse data modalities from 

various sources,  clinically meaningful model interpretability to aid medical decision-making, and 

real-time  adaptive therapy optimization that can adjust to changing patient conditions. These gaps 

present  significant opportunities for progress in privacy-preserving cardiovascular AI applications. 

The advanced FL framework presented in this review introduces four key innovations  that 

are specifically designed for CHF management. First, it establishes a sophisticated  multimodal 

architecture that effectively integrates various data types, such as phonocardiograms,  biomarker 

trends, and imaging features, using privacy-preserving neural networks enhanced by  attention 

mechanisms. Second, it introduces Federated Explainable AI (FedXAI), a  groundbreaking 

approach that allows for localized model interpretation without compromising  data confidentiality, 

marking a significant step forward in clinician adoption and trust. Third, the  framework 

incorporates reinforcement learning methodologies for dynamic treatment  personalization within 

the FL paradigm while maintaining a sub-200ms latency crucial for real world clinical applications 

and time-sensitive decision support. Finally, the system includes  comprehensive regulatory-

compliant safeguards, such as homomorphic encryption and federated  fairness constraints, creating 

the first end-to-end FL solution that is ready for multicenter clinical  trials. By effectively bridging 

the gap between cutting-edge AI innovation and practical clinical  implementation, this framework 

offers not just a theoretical model but a scalable blueprint for  privacy-preserving, equitable CHF 

care, while simultaneously setting new standards for  responsible AI deployment in healthcare 

settings. Future research directions include integration  with wearable devices for continuous 

monitoring and development of policy frameworks to  ensure equitable access to these AI-driven 

healthcare solutions [4, 5].  

The meta-analysis in table 1 provides a thorough overview of recent advancements in  

federated learning (FL) and privacy-preserving AI within healthcare, particularly concerning  

Chronic Heart Failure (CHF). While several frameworks, such as those by Siddartha Rachakonda  

and Zhangyi Shen, concentrate on cross-silo AI and general health management using FL, they  

lack specific applications to CHF or multimodal data integration. Approaches such as Wei  Yang’s 

FLCP and Yunbo Yang’s OpenVFL prioritize scalability and privacy through  communication-

efficient protocols and vertical integration but fall short in terms of  interpretability and real-time 



Page 734 

 

Vol 14 Issue 5, May2025 ISSN 2456 – 5083 

  
        
    
 
 
 

 

 
 

deployment. Studies such as LEAF by Nisarg P. Patel and PPFed  by Guangsheng Zhang addressed 

fairness and personalization but exposed challenges in  implementation complexity and the absence 

of CHF-specific adaptation [7]. Other contributions,  such as those by Wang et al., focused on 

lightweight, imaging-based, or edge-compatible FL,  although they are often limited in scope or 

generalizability. Despite significant progress in model  security, personalization, and decentralized 

training, the analysis revealed that existing solutions  rarely integrate all essential components, such 

as real-time responsiveness, multimodal fusion,  clinician interpretability, and regulatory 

alignment, underscoring the need for a comprehensive,  CHF-specific federated framework. 

Table 1: Meta-Analysis of Federated Learning and Privacy-Preserving AI in CHF and Healthcare 

Study / Framework  Focus Area  Privacy Technique  Key Contributions  Limitations / Gaps 

Siddartha   

Rachakonda et al. 

Cross-silo and   

IoMT AI   

implementation 

Federated 
Learning,  

Encryption 

Scalable FL model;   

effective for   

heterogeneous data   

sources 

Lacks specific 
CHF  applications 

Zhangyi Shen et al.  Health management  Federated Learning Social computing   
integration in FL 

for  health 

General health   

focus; no   

multimodal data   

emphasis 

Wei Yang et al.   

(FLCP)  

FL framework  Communication  

efficient protocols 

Improved 
scalability  and 

privacy 

No clinical   

interpretability   

mechanisms 

Guodong Long et al.  Open innovation 
in  digital health  

FL  Addresses 
healthcare  

innovation using 
FL 

Older; lacks   
advanced 

encryption  and 
explainability 

Nisarg P. Patel et 
al.  (LEAF) 

Healthcare   

ecosystem 

Privacy-
preserving  FL 

Federated fairness   

integration 

Implementation   
complexity in 

real time 
scenarios 

Snehlata Mishra, 
Ritu  Tandon 

Decentralized   

healthcare AI 

Secure insights   

generation 

Highlights FL’s 
benefit  for medical   

collaboration 

Lacks real-time   

adaptability for CHF 

Junkai Wang et al.  Logistic 
regression based 

FL 

Privacy-
preserving  FL 

Lightweight FL 
model  for healthcare 

Focused on 
specific  

algorithm; not   

multimodal 

Xiaodong Wang et al.  IoMT disease   

diagnosis  

Differential privacy  Addresses privacy in  
wearable-integrated 

FL 

General to 
disease;  not 
CHF-specific 



Page 735 

 

Vol 14 Issue 5, May2025 ISSN 2456 – 5083 

  
        
    
 
 
 

 

 
 

Dianwen Ng et al.  Medical imaging  FL for small datasets  Multi-center 
imaging  model 

training 

Imaging only; 
no  

reinforcement   

learning 

Qiang Yang et al.  IP protection in FL  Privacy + IP-
right  protection 

Emphasizes model   

security and ownership 

No CHF use case 
or  patient-level   

adaptation 

Yunbo Yang et 
al.  (OpenVFL)  

Vertical FL  Stronger privacy 
in  FL 

Novel vertical   

integration 

Limited 
scalability  in 

real-time   

scenarios 

Van Nguyen Tran 
et  al.  

Cross-silo FL  Personalized FL Tailored privacy  

preserving model   

training 

Limited 
evaluation  in 

dynamic   

conditions 

Mahbuba Ferdowsi 
et  al. 

Cardiovascular   

disease 

Interpretable &   
privacy-

preserving  AI 

Focus on model   

transparency for   

diagnosis 

Broader   

cardiovascular   

scope; lacks FL   

detail 

Jie Xu et al.  Acute 
myocardial  
infarction  

Federated FL  Multi-center 
privacy preserving 

diagnosis 

Not real-time;   

focused on   

retrospective data 

Andrei Puiu et al.  Cardiovascular   

imaging  

Explainable AI  XAI integration 
into  imaging 

models 

Not federated or   
dynamic 
treatment  
capable 

Haotian Zhou et 
al.  (PFLF)  

Edge computing  FL for edge  Edge-compatible   

privacy-preserving FL 

Infrastructure  
dependent; 

limited  to edge 
cases 

Madallah 
Alruwaili  et al. 

Disability   

healthcare 

Privacy-
preserving  FL 

Inclusion of   

underrepresented   

groups 

Focus on 
disability;  lacks 

CHF   

adaptability 

Guangsheng Zhang 
et  al. (PPFed)  

Personalized FL  Privacy +   

personalization 

Multi-institution   
training without 

raw  data 

No specific   
application to 
CHF  or real-time 
therapy 

 

 

2.1 Literature Gaps  

Despite the growing interest in federated learning (FL) and privacy-preserving machine  

learning in healthcare, a notable gap persists in their application to chronic heart failure (CHF)  
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detection and management. Current studies mainly focus on broader cardiovascular conditions,  

general EHR-based analytics, or imaging-centric models, with limited attention paid to CHF  

specific pathological markers and progression patterns. Most existing studies employ single 

modality inputs such as ECG, medical imaging, or centers on generalized disease prediction,  

neglecting the nuanced multimodal needs of CHF care. There is a distinct lack of FL frameworks  

that effectively integrate heterogeneous data sources such as phonocardiograms (PCG),  

electrocardiograms (ECG), echocardiograms, and laboratory biomarkers within a decentralized  

architecture. Additionally, although reinforcement learning (RL) has shown potential for  adaptive 

healthcare delivery, its integration into FL for real-time CHF therapy optimization remains 

underexplored. This underscores the necessity for robust, multilayered frameworks  capable of 

supporting dynamic, patient-specific learning while maintaining privacy across  distributed 

environments. Furthermore, existing FL models lack mechanisms for personalization,  

interpretability, and regulatory compliance, all of which are vital for the clinical management of  

CHF. Most models aim to produce globally shared models without addressing the variability in  

individual patient responses to treatment, thereby missing opportunities for precision medicine.  

Even advanced methods, such as LEAF and PPFed, do not incorporate CHF-specific patient  

stratification or adaptive feedback mechanisms to support continuous care. While explainable AI  

(XAI) has been proposed in centralized settings, its integration into federated environments  

remains limited, reducing clinician trust and hindering its adoption. Moreover, real-time  

implementation issues such as latency, model drift, and scalability are often overlooked in  

experimental studies. Regulatory requirements regarding data privacy (such as HIPAA or  GDPR) 

and ethical AI practices are seldom considered holistically. Consequently, there is a  significant 

gap in the literature regarding the development of scalable, interpretable, and  regulation-compliant 

FL models specifically tailored for CHF detection, monitoring, and  personalized treatment delivery 

[8, 9]. 

Table 2: Comparison of Proposed and Existing Methods for Chronic Heart Failure (CHF)  

Detection and Management  

Criteria  Existing Methods  Proposed Method  Remarks 



Page 737 

 

Vol 14 Issue 5, May2025 ISSN 2456 – 5083 

  
        
    
 
 
 

 

 
 

Learning Architecture Centralized or partially  
federated learning with  
limited node 
participation. 

Fully Federated Learning  
(FL) with secure,  
decentralized 
architecture. 

Overcomes data-sharing  
limitations and enables  
collaborative learning  
across hospitals. 

Data Modalities  Single-modality inputs  
(e.g., ECG, EHR). 

Multimodal data fusion  
(PCG, ECG, biomarkers,  
echocardiograms). 

Supports holistic CHF  
analysis by leveraging  
diverse physiological and  
imaging data. 

Model Types CNN, RNN, or shallow  
ML models; rarely  
combined or optimized. 

CNN-LSTM with  
attention mechanisms for  
temporal and spatial  
relevance. 

Enhances feature  
extraction and sequence  
modeling for CHF  
episodes. 

Explainability Minimal or no XAI  
integration; black-box  
approaches. 

Federated Explainable AI  
(FedXAI) with attention 
driven insights. 

Improves clinical trust  
and interpretability in  
predictions. 

Therapy Optimization Static prediction models;  
no real-time feedback or  
personalization. 

Integration of  
Reinforcement Learning  
for adaptive therapy  
optimization. 

Enables dynamic,  
personalized care plans  
for CHF management. 

Privacy Preservation Basic anonymization or  
pseudonymization; not  
robust. 

Differential Privacy +  
Homomorphic 
Encryption  for end-to-
end security. 

Ensures HIPAA/GDPR  
compliance and robust  
patient data  
confidentiality. 

Clinical Deployment Prototype-level with  
limited hospital-scale  
validation. 

Real-time remote  
monitoring (<200 ms  
latency); multi-center  
ready. 

Demonstrates operational  
scalability and latency  
suitable for clinical use. 

Interoperability Limited standardization;  
vendor-locked or  
institution-specific. 

Standards-driven   
interoperability across  
systems and hospitals. 

Facilitates seamless data  
and model integration  
across platforms. 

Bias Mitigation  Often ignored or partially  
addressed. 

Embedded bias 
mitigation  mechanisms 
during  training and 
inference. 

Promotes fairness and 
equitable AI outcomes 
for  diverse populations. 

Regulatory Compliance  Rarely addressed  
holistically. 

Full compliance with  
HIPAA and GDPR  
regulations. 

Encourages safe  
deployment in real-world  
healthcare environments. 

Future Scope Little consideration for  
wearables, global  
expansion, or policy. 

Integration planned with  
wearable devices, policy  
frameworks, and global  
health AI. 

Aligns with future trends  
in remote, inclusive, and  
sustainable health  
solutions. 
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Table 2 offers a comprehensive comparison between the existing methods and the  proposed 

framework for Chronic Heart Failure (CHF) detection and management, highlighting  the latter's 

advancements in key areas. Unlike traditional centralized or partially federated  approaches, the 

proposed system employs a fully decentralized Federated Learning (FL)  architecture, enhancing 

collaboration without the need for data sharing. It supports multimodal  data fusion, including PCG, 

ECG, biomarkers, and imaging, and provides a more holistic  analysis than single-modality 

systems. The model architecture is notably superior, utilizing  

CNN-LSTM networks with attention mechanisms to provide richer temporal and spatial insights.  

Explainability is significantly enhanced through the Federated Explainable AI (FedXAI) module,  

which fosters clinician trust. Unlike static models, the integration of reinforcement learning  

enables real-time personalized therapy. The framework ensures robust privacy through  differential 

privacy and homomorphic encryption, fully complies with HIPAA and GDPR, and  supports real-

time clinical deployment with sub-200 ms latency [10]. Moreover, it promotes  interoperability, 

embeds fairness constraints for bias mitigation, and is designed for scalability  with wearable 

integration and policy support. Overall, it outperforms the existing systems by  addressing both 

technical and ethical challenges in CHF care.  

3. Background  

A. Chronic Heart Failure as a Global Health Burden  

Chronic heart failure represents a major public health challenge affecting over 64 million  

people worldwide. It accounts for approximately 10% of all hospitalizations in developed  

countries, highlighting not only its extensive impact but also the substantial strain it places on 

healthcare systems. CHF is a complex, progressive condition characterized by the inability of the  

heart to pump sufficient blood, often stemming from conditions such as coronary artery disease,  

hypertension, or myocardial infarction [11]. Despite medical advancements, early detection and  

timely management remain crucial for improving prognosis and quality of life. The integration of  

Artificial Intelligence (AI) into CHF care has opened new pathways for clinical decision-making,  

ranging from early diagnosis using ECGs and imaging to predictive modeling of hospitalization  

and mortality risks. However, the real-world application of AI in healthcare has several  limitations. 
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These include stringent data privacy laws, such as HIPAA and GDPR, fragmented  data across 

institutional silos, and the opaque black box nature of deep learning models that limit  clinical 

interpretability. These challenges collectively create a paradox in which the healthcare  

environments most in need of AI-driven solutions are also the least equipped to implement them  

under current regulatory and infrastructural constraints [12].  

B. Federated Learning in Healthcare  

Opportunities and Challenges Federated Learning (FL) has emerged as a transformative  

approach to overcome these barriers by enabling decentralized, privacy-preserving machine  

learning across multiple healthcare institutions. Unlike traditional centralized learning methods,  

FL allows institutions to train machine learning models collaboratively without exchanging raw  

data. Instead, encrypted model updates are shared, preserving patient confidentiality and  

ensuring compliance with data-protection regulations. This architecture is particularly  

advantageous in healthcare, in which patient data are highly sensitive and siloed across  institutions. 

Several studies have validated the efficacy of FL in the cardiovascular and general  health domains, 

demonstrating performance on par with centralized models in applications such  as arrhythmia 

detection, diagnosis of myocardial infarction, and mortality prediction.  Nevertheless, current FL 

implementations face key limitations when applied to the CHF [13].  These include inadequate 

support for integrating heterogeneous data modalities (such as ECGs,  biomarkers, PCG, and 

imaging), a lack of explainability tools essential for clinical decision  

making, and the absence of real-time adaptive therapy systems that respond dynamically to  

patient conditions.  

C. Addressing significant limitations  

This study introduced an innovative Federated Learning framework designed specifically  

for the detection and management of CHF. The framework features a multimodal architecture  that 

securely processes and learns from various data types using CNN-LSTM models enhanced  by 

attention mechanisms. This configuration ensures comprehensive extraction of the temporal  and 

spatial features essential for CHF monitoring. Additionally, it introduces a Federated  Explainable 

AI (FedXAI) component to enhance the model's decision transparency and  interpretability, thereby 
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building clinician trust [14]. Moreover, incorporating reinforcement  learning into the FL paradigm 

allows for dynamic, personalized treatment pathways that adapt in  real-time according to patient 

health trajectories. This advancement is crucial for delivering  precision medicine with a low 

latency (<200 ms), making it suitable for real-time clinical  applications. To comply with global 

data protection standards, the framework incorporates  advanced privacy techniques, such as 

differential privacy and homomorphic encryption, along  with federated fairness constraints, to 

reduce bias across diverse patient groups. The proposed  framework represents a paradigm shift in 

AI-driven CHF care, transitioning from generalized,  opaque, and centralized models to ethical, 

interpretable, and privacy-preserving systems that are  ready for clinical deployment. By addressing 

current technical and regulatory gaps, this research  aims to establish a new standard for 

decentralized medical AI, paving the way for future  innovations such as wearable integration and 

global policy alignment for equitable AI access [15,  16].  

4. Proposed Method  

This innovative framework presents a comprehensive end-to-end Federated Learning  

(FL) system meticulously designed for privacy-preserving and explainable artificial intelligence  

applications to detect and manage Chronic Heart Failure (CHF). Unlike traditional centralized  

models, it decentralizes the training process, allowing multiple clinical institutions to  

collaboratively develop predictive models without exchanging raw patient data. Instead,  encrypted 

model updates are shared, ensuring strict compliance with data protection regulations  such as 

HIPAA and GDPR [17]. At the heart of the framework is a sophisticated multimodal  CNN-LSTM 

architecture enhanced with attention mechanisms capable of capturing both spatial  and temporal 

characteristics from diverse clinical inputs, including electrocardiograms (ECG),  

phonocardiograms (PCG), biomarker trends, and imaging data. This deep integration enhances  

early CHF detection and facilitates nuanced monitoring of disease progression. To protect model  

integrity and data confidentiality, the framework incorporates blockchain-based model  verification 

alongside Secure Multiparty Computation (SMPC), establishing a tamper-proof audit  trail, and 

preventing unauthorized manipulation [18]. These layered security measures enable  healthcare 

organizations to jointly train advanced AI models while maintaining strict privacy  boundaries. By 

bridging privacy, explainability, and interoperability, the system represents a  significant 

advancement in responsible AI-driven cardiovascular care, demonstrating how  federated 
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architectures can support real-world clinical deployment, comply with regulatory  mandates, and 

improve outcomes through secure, interpretable, and adaptive medical  intelligence [19].  

4.1 Key Innovations   

This framework introduces groundbreaking advancements in chronic heart failure  

management through a sophisticated hybrid CNN-LSTM architecture that simultaneously  

processes multiple data types (PCG, ECG, biomarkers, and echocardiography), significantly  

enhancing early diagnosis and personalized treatment capabilities beyond traditional single  

modality approaches [20]. The intelligence of the system is made transparent through a dedicated  

FedXAI module that generates interpretable explanations via attention heatmaps and SHAP  values, 

allowing clinicians to verify AI-driven decisions without compromising patient  confidentiality. 

Further innovation comes from the integrated federated reinforcement learning  layer that 

continuously optimizes treatment plans based on individual patient responses with  emergency-

ready latency below 200ms, while privacy and security are maintained through a  comprehensive 

combination of blockchain verification, secure multiparty computation,  differential privacy noise 

addition, and homomorphic encryption for computations on fully  encrypted data. The technical 

sophistication of this approach is matched by its ethical  considerations and practical 

implementation features [21]. By applying federated fairness  constraints to detect and mitigate 

demographic or geographic biases, the framework ensures  equitable performance across diverse 

patient populations and health care environments. The  

system design aligns fully with the HIPAA and GDPR requirements through end-to-end  

confidentiality measures during data transmission and model aggregation, making it appropriate  

for global clinical deployment. This framework represents a significant leap forward by  

demonstrating how privacy-preserving federated architectures can handle complex multimodal  

medical data while maintaining regulatory compliance, ensuring clinical reliability, and  providing 

actionable insights that directly improve patient care through continuous remote  monitoring and 

adaptive treatment recommendations [22, 23].  

4.2 Comparison with Existing Frameworks   

The proposed framework presents unparalleled advantages over the existing methods by  

seamlessly integrating multiple advanced technologies. Unlike systems limited to a single  

modality, it processes a variety of data types, such as ECG, PCG, biomarkers, and imaging, for a  
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comprehensive analysis of CHF while offering local interpretability through its FedXAI module.  

This is in stark contrast to conventional black-box models or those that require centralized  

explanations [24]. Its reinforcement-learning-based adaptive therapy capability allows for  dynamic 

treatment optimization in real time, surpassing static prediction models by continuously  evolving 

recommendations based on patient responses. The framework's security architecture,  which 

combines blockchain verification, secure multiparty computation, differential privacy, and  

homomorphic encryption, provides significantly stronger privacy guarantees than traditional  

encryption-only methods. Additionally, its exceptional performance (<200ms latency) supports  

real-time remote monitoring capabilities, which are often absent in most existing solutions. This  

pioneering system is explicitly designed to meet the HIPAA and GDPR standards through  

comprehensive regulatory compliance measures, which often lack alternative approaches. By  

seamlessly integrating federated learning, blockchain-based verification, multimodal processing,  

interpretable AI, and reinforcement learning, the framework addresses the critical challenges of  

modern healthcare AI: data privacy, explainability, personalization, and regulatory compliance.  It 

delivers a secure, transparent, and adaptive solution for decentralized cardiovascular care,  

enhancing diagnostic accuracy and treatment efficacy, while ensuring trust, fairness, and  

scalability across diverse global healthcare institutions [25].  

4.3 Pseudocode for proposed system  

Input: Local Patient Data, Global Model Weights, Reinforcement Learning State,  
Privacy Settings, Regulatory Constraints, Blockchain Ledger   

Output: Encrypted Local Model Updates, Personalized Treatment Policy, FedXAI  
Interpretability Reports, Bias Detection & Mitigation Logs, Audit Trail on Blockchain,  
Real-Time Alerts. 

1. Initialize GlobalModel with CNN-LSTM-Attention architecture  
2. Initialize BlockchainLedger, PrivacyModule (DP + HE), FedXAI, and RLModule 3. 
For each Round in TrainingRounds:  

4. For each Institution in ParticipatingInstitutions (in parallel):   

5. Step 1: Local Data Processing  

6. Load LocalData (ECG, PCG, biomarkers, imaging)  
7. Extract Features using CNN for spatial and LSTM for temporal characteristics  8. 
Step 2: Local Model Training  
9. Train LocalModel on LocalData using Current GlobalModel weights 10. 
Apply DifferentialPrivacy to gradients  

11. Encrypt gradients using HomomorphicEncryption  
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12. Step 3: Local Explainability  

13. Generate AttentionHeatmaps and SHAP values via FedXAI  

14. Store local interpretability results for clinician use   

15. Step 4: Local RL Update  
16. Update PersonalizedTreatmentPolicy using Reinforcement Learning 
17. Monitor latency to ensure it is <200ms   

18. Step 5: Secure Model Update  

19. Package LocalModelUpdate with encrypted gradients  

20. Log ModelUpdate to BlockchainLedger  
21. Send EncryptedUpdate to Aggregator via Secure Multi-Party Computation  (SMPC)  

22. Step 6: Aggregation at Central Aggregator  

23. Receive all EncryptedUpdates  

24. Perform Secure Aggregation using HomomorphicEncryption  

25. Update GlobalModel weights   

26. Step 7: Fairness & Bias Mitigation  

27. Apply FederatedFairnessConstraints  

28. Validate model generalizability across institutions  

29. Step 8: Disseminate GlobalModel  

30. Distribute Updated GlobalModel to all Institutions  

31. Deploy final GlobalModel with:  

- Blockchain-auditable verification  

- FedXAI-enabled local interpretation  

- Personalized RL treatment engine  

- Real-time readiness and privacy compliance (HIPAA, GDPR)  

32. End   

4.4 Architecture of the proposed model  

Figure 1 illustrates a comprehensive Federated Learning (FL) framework tailored for  

privacy-preserving and explainable AI in the detection and management of Chronic Heart Failure  

(CHF). This framework allows multiple hospitals to collaboratively train local CNN-LSTM  

models using sensitive patient data such as ECGs, PCGs, biomarkers, and imaging, without the  

need to share the data itself. A robust privacy layer ensures data security and regulatory  compliance 

using differential privacy, homomorphic encryption, secure multi-party computation,  and 

blockchain-based auditing [26, 27]. A central aggregator securely combines model updates  

using attention-enhanced CNN-LSTM architectures to create a globally optimized model. The  

application layer incorporates explainability techniques such as SHAP, LIME, and CAMs via the  

FedXAI module and supports personalized, real-time therapy recommendations through a  

reinforcement learning module. This framework not only improves clinical decision-making and  
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early CHF detection, but also guarantees patient data privacy, regulatory compliance, model  

fairness, and global scalability, providing a transformative, ethical solution for AI-driven  

cardiovascular healthcare [28, 29].  

 
Figure 1: Privacy-preserving and explainable AI in the detection and management of CHF  

A. Local Hospital Nodes and On-Site Model Training  

In the federated network, each hospital, designated as Hospital 1, Hospital 2, and  Hospital 

N, independently manages and retains its local patient data, which includes  phonocardiograms 

(PCG), electrocardiograms (ECG), biomarkers, and medical imaging. Each  hospital trains its own 

CNN-LSTM model locally, avoiding the need to send sensitive  information to a central location. 

This approach preserves data privacy, ensures compliance with  



Page 745 

 

Vol 14 Issue 5, May2025 ISSN 2456 – 5083 

  
        
    
 
 
 

 

 
 

regional data protection laws, and allows hospitals to participate in federated learning systems.  

This system benefits from shared intelligence without compromising patient confidentiality 

because it exclusively shares model parameters or gradients rather than raw patient data [30].  

B. Privacy Layer: Safeguarding Data and Model Updates  

The privacy layer constitutes the central component of this framework and employs  

sophisticated cryptographic and privacy-preserving methodologies. These include Differential  

Privacy, which obscures individual data contributions through the addition of statistical noise;  

Homomorphic Encryption, which facilitates computations on encrypted data without requiring  

decryption; and Secure Multi-Party Computation (SMPC), which ensures that no single entity  

gains complete access to the data [31]. Additionally, Blockchain Verification and Audit provide  

tamper-proof logging of all transactions and updates, while compliance with HIPAA and GDPR  

aligns with the global healthcare data protection standards. Furthermore, Federated Fairness  

Constraints are implemented to mitigate model bias across various institutions and  demographics. 

Collectively, these elements function synergistically to enable secure  transmission of local model 

updates to the central aggregator while maintaining stringent data  protection.  

C. Central Aggregator: Building a Global Intelligence Model  

At the center of the federated ecosystem is the Central Aggregator, which is a pivotal  

component that receives encrypted or privacy-enhanced model updates from each hospital. Its  role 

is to securely combine these local models into a global CNN-LSTM model, which is further  refined 

using attention mechanisms. These mechanisms allow the model to focus on the most  relevant 

sections of input data, thereby enhancing both interpretability and accuracy. Once  trained, the 

global model was redistributed to participating hospitals to improve their local  predictions. 

Importantly, throughout this process, the system upholds its commitment to privacy  and data 

sovereignty by ensuring that raw patient data are never accessed at any stage.  

D. Application Layer: Clinical Deployment and Explainability  

The final segment of the framework is the Application Layer, which facilitates real-world  

use and clinical utility using several integrated modules. These include the FedXAI Module,  which 

incorporates tools such as SHapley Additive Explanations (SHAP) for assessing global  feature 
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importance, Local Interpretable Model-agnostic Explanations (LIME) for local  interpretability, 

and Class Activation Maps (CAMs) for visual insights. Additionally, the  Reinforcement Learning 

(RL) module enables real-time adaptive therapy planning with latency  

under 200 ms, supporting dynamic and personalized care [32]. The CHF Detection module aids  

in early diagnosis, risk stratification, and monitoring disease progression, whereas the CHF  

Management module offers tools for personalized treatment, remote patient monitoring, and AI 

assisted clinical decision support. Together, these modules work in harmony to translate the  

technical model into actionable clinical benefits that can directly enhance patient care.  

5. Results and Discussion  

5.1 Experimental Setup and Evaluation Metrics  

5.1.1 Dataset Description  

The proposed Federated Learning (FL) framework was evaluated using a multi institutional 

dataset comprising de-identified patient records from five geographically dispersed  healthcare 

centers, including 12,450 patients diagnosed with Chronic Heart Failure (CHF) of  varying severity 

levels and 15,320 control subjects, with each patient record containing multiple  data modalities: 

10-second 12-lead ECG recordings at 500 Hz, 20-second phonocardiogram  recordings at 4 kHz, 

time-series biomarker data including BNP, NT-proBNP, troponin, and CRP  levels, 

echocardiography-derived metrics (LVEF, E/A ratio, LV mass), and clinical parameters  such as 

demographic information, comorbidities, and treatment histories—all partitioned non  

uniformly across the five institutions to simulate real-world data heterogeneity, with each  

institution containing–15-30% of the total dataset, thereby creating a challenging but realistic  non-

IID (Independent and Identically Distributed) setting specifically designed to thoroughly  evaluate 

the federated learning performance under conditions that closely mirror the data  distribution 

challenges encountered in actual multi-center clinical environments.  

5.1.2 Implementation Details  

The framework was developed using TensorFlow Federated (TFF) version 0.40.0,  

incorporating custom enhancements for privacy-preserving computations. It features a CNN LSTM 

model architecture that includes convolutional layers with 3×3 kernels and 32, 64, and  128 filters 
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for extracting spatial features. To model temporal sequences, BiLSTM layers with  128 units were 

used, along with a multi-head attention mechanism comprising eight heads to  weigh feature 

relevance. Regularization is achieved through dropout at 0.3 and batch  normalization. To ensure 

privacy, differential privacy with a budget of ε = 3.0, as well as  homomorphic encryption using 

the CKKS scheme with 128-bit security and secure multiparty  computation via the SPDZ protocol. 

The reinforcement learning component utilizes a Deep Q  

Network (DQN) with experience replay to optimize treatments, whereas the FedXAI module  

incorporates SHAP, LIME, and Grad-CAM for model interpretability.  

5.1.3 Evaluation Metrics  

The evaluation assessed clinical performance (accuracy, sensitivity, specificity, F1-score,  

AUC, PPV, NPV), technical efficiency (communication overhead per round, training time per  

epoch, inference latency, privacy leakage via membership inference attacks), explainability  

(fidelity of explanations against model outputs, consistency across similar inputs, clinician  

feedback scores), and system scalability (convergence behavior with an increasing number of  

participants and performance across diverse data distributions).  

5.1.4 FedXAI Component Evaluation  

Table 2 shows that the FedXAI component of the proposed framework underwent a  

thorough evaluation using both quantitative performance metrics and qualitative feedback from  

clinicians, demonstrating its effectiveness in enhancing the model interpretability for clinical  

applications. Among the various explanation methods assessed, SHAP achieved the highest  

fidelity score (0.86), indicating a strong alignment between the model predictions and  explanation 

outputs. Meanwhile, decision trees received the highest clinician satisfaction score  (4.5) because 

of their intuitive rule-based transparency. Class Activation Maps (CAMs) are  notable for their 

computational efficiency (0.9 s) and strong clinical utility, particularly in  visualizing image-based 

features. Integrated Gradients and LIME also performed well, offering  balanced trade-offs between 

fidelity, stability, and usability. Visual outputs from FedXAI  effectively highlighted critical ECG 

patterns, such as ST depression and T-wave abnormalities,  and elevated biomarker trends, such as 
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BNP, enabling clinicians to gain actionable insights into  the AI’s reasoning process. Overall, the 

FedXAI module significantly contributes to building  trust and confidence in AI-assisted decision 

making in CHF management.  

Table 3: Explainability Methods Performance 

Explanation Method  Fidelity   

Score 

Stability   

Score 

Computation 

Time  (s) 

Clinician 

Satisfaction  (1-5) 

SHAP  0.86  0.79  3.2  4.2 

LIME  0.82  0.75  1.8  3.9 

Class Activation Maps  0.78  0.84  0.9  4.3 

Integrated Gradients  0.85  0.81  2.4  4.0 

Decision Trees  0.74  0.88  0.7  4.5 

 

 

5.1.5 RL Performance in Treatment Planning  

Table 4 shows that the reinforcement learning (RL) module demonstrated significant  

clinical benefits in optimizing treatment for patients with CHF patients, as shown by a  retrospective 

analysis of 2,340 cases. When compared to standard care and guideline-based  treatments, RL-

optimized recommendations significantly outperformed both, achieving a 32.1%  reduction in 30-

day readmission rates, a 23.1% reduction in 90-day mortality, and the highest  improvement in 

NYHA classification (52.1%). Furthermore, the RL approach resulted in the  lowest incidence of 

adverse drug events (13.9%) and the greatest enhancement in patient quality  of life, with a score 

increase of +4.2. These results underscore the potential of the RL module to  deliver personalized 

adaptive therapy plans that improve clinical outcomes while reducing  healthcare utilization and 

associated costs.  

Table 4: Reinforcement Learning Performance Metrics  

Metric  Standard Care  Guideline-Based  RL-Optimized 

30-day readmission rate (%)  24.3  19.7  16.5 
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90-day mortality (%)  12.1  10.4  9.3 

NYHA class improvement (%)  38.4  45.2  52.1 

Adverse drug events (%)  17.8  15.3  13.9 

Quality of life score change  +2.3  +3.1  +4.2 

 

 

5.1.6 Privacy and Security Evaluation  

Table 5 shows that the proposed Federated Learning framework exhibited remarkable  

resilience against various privacy attacks when tested in simulated adversarial scenarios,  

significantly surpassing both the centralized learning and baseline FL models. By incorporating  

advanced privacy-preserving techniques such as differential privacy, homomorphic encryption,  

and secure multiparty computation, the framework effectively reduced the success rates of  

membership inference, model inversion, property inference, and reconstruction attacks to 52.1%,  

29.4%, 31.6%, and 18.3%, respectively. The most significant improvement was a 55.6%  reduction 

in the success of reconstruction attacks compared with centralized models, highlighting  the 

robustness of the system in protecting sensitive patient data during model training and  aggregation 

processes. These results confirmed the effectiveness of the framework in  maintaining privacy 

integrity and ensuring secure deployment in clinical environments. 

Table 5: Privacy Attack Success Rates (%)  

Attack Type  Centralized Learning  Baseline FL  Proposed FL Framework 

Membership Inference  76.5  64.2  52.1 

Model Inversion  62.3  48.7  29.4 

Property Inference  58.9  s42.5  31.6 

Reconstruction Attack  41.2  32.8  18.3 
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5.1.7 Regulatory Compliance Assessment  

Table 6 shows that the independent regulatory compliance assessment confirmed that the  

proposed Federated Learning framework upholds high standards across all essential healthcare  

data protection requirements. It achieved nearly perfect scores, including 100 for data residency,  

which is attributed to its decentralized architecture that ensures that patient data remains within  

local institutions. Additionally, it scored 94 for the HIPAA Safe Harbor, requiring only minor  

documentation enhancements. The framework also received a score of 92 for GDPR-compliant  

data processing and 90 for GDPR right to explanation, with the FedXAI module effectively  

enhancing transparency and interpretability. Although the FDA Software as a Medical Device  

criterion scored slightly lower, at 87, this suggests readiness pending further validation. Overall,  

the framework is a robust, regulation-aligned solution that is well suited for real-world  deployment 

in diverse clinical settings.  

Table 6: Regulatory Compliance Assessment 

Regulatory Requirement  Compliance Score (0-100)  Notes 

HIPAA Safe Harbor  94  Minor documentation improvements needed 

GDPR Data Processing  92  Full compliance with processing limitations 

GDPR Right to Explanation  90 FedXAI provides adequate 

explanation  mechanisms 

FDA Software as 

Medical  Device 

87 Additional validation required for 

full  approval 

Data Residency   

Requirements 

100  Data never leaves original institution 

 

 

5.1.8 Remote Monitoring Implementation  

Table 7 shows that the pilot implementation of the proposed framework for remote  
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monitoring among 120 patients with Chronic Heart Failure (CHF) across two healthcare systems  

over six months demonstrated significant improvements in both healthcare utilization and patient  

outcomes. Emergency department visits and hospitalization rates decreased by 34.4% and  33.3%, 

respectively, while medication adherence improved by 17.7%, indicating enhanced  patient 

engagement. Patient satisfaction also increased by 23.5%, reflecting better overall care  experience. 

Most notably, the clinical response time was reduced by an impressive 74.7%,  showing the 

framework’s effectiveness in enabling timely medical interventions. These results  confirm the 

practical value of the framework in real-world settings for proactive and efficient  CHF 

management.  

Table 7: Remote Monitoring Implementation Results  

Metric  Before Implementation  After Implementation  Change (%) 

Emergency 
department  visits  

3.2  2.1  -34.4 

Hospitalization rate  1.8  1.2  -33.3 

Medication adherence (%)  72.5  85.3  +17.7 

Patient satisfaction score  3.4  4.2  +23.5 

Clinical response 
time  (hours)  

8.3  2.1  -74.7 

 

 

5.1.9 Discussion and Implications  

The discussion highlights that the proposed Federated Learning framework successfully  

overcomes the longstanding trade-off between privacy, performance, and explainability in  

healthcare AI by achieving near-centralized accuracy (within 0.5%), while ensuring strong  privacy 

protection and delivering clinically meaningful insights. This integration directly  

addresses the key barriers to AI adoption in healthcare by offering a solution that is effective,  

trustworthy, and compliant with regulatory standards. Clinician feedback underscores the  

importance of explainability as an essential component of the clinical workflow, with the  FedXAI 

module significantly enhancing decision confidence and interpretation speed. However,  variations 
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in satisfaction with different explanation methods highlight the need for customizable  interfaces 

tailored to individual clinical preferences. Additionally, the framework’s sub-200ms  latency 

supports real-time responsiveness; however, the balance between rapid alerts for acute  

events and deeper, more thorough analysis for long-term treatment planning suggests a need for  

tiered processing strategies in future implementations. Overall, the framework demonstrates a  

promising path toward clinically integrated, secure, and interpretable AI for chronic disease  

management.  

5.2 Performance Metrics  

5.2.1 Clinical performance metrics  

Figure 2: Clinical performance metrics  

Figure 2 shows a chart comparing clinical performances, demonstrating that the proposed  
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Federated Learning (FL) framework achieves results nearly identical to those of centralized  

learning across key metrics such as accuracy, sensitivity, specificity, positive predictive value  

(PPV), and negative predictive value (NPV). These metrics approached or reached their  maximum 

observed values, indicating excellent diagnostic consistency and reliability. Notably,  the proposed 

FL framework surpasses the baseline FL model in terms of F1-Score and Area  Under the Curve 

(AUC), which are crucial for evaluating the balance between precision and  recall, as well as the 

model's overall discriminative ability. The improvement in the F1-Score  suggests that the proposed 

framework handles imbalanced data scenarios more effectively,  

achieving better harmony between false positives and false negatives. Furthermore, a higher  AUC 

highlights its enhanced capacity to distinguish between positive and negative cases.  Collectively, 

these findings affirm that the proposed FL framework maintains high clinical  performance while 

offering the added benefits of decentralized data training, making it well  suited for secure, privacy-

preserving, and scalable deployment in real-world healthcare settings  where data sharing is limited 

or restricted.  

5.2.2 AUC by Data Modality   
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Figure 3: AUC by Data Modality Combination  

Figure 3 shows a chart illustrating the predictive performance of various data modalities  

and their combinations, measured by the Area Under the Curve (AUC), a crucial metric for  

assessing model discrimination capability. Among the individual modalities, ECG data alone  

achieved the highest AUC (approximately 0.87), followed by biomarkers and imaging, whereas  

PCG data alone resulted in the lowest AUC, indicating limited standalone predictive utility.  

Combining modalities significantly enhanced performance: the combination of ECG, PCG, and  

biomarkers led to a notable increase in AUC (approximately 0.91), and integrating all available  

modalities produced the highest AUC (> 0.93), demonstrating the power of multimodal data  

fusion. These results underscore that, while single modalities offer moderate predictive strength,  

combining diverse physiological and biochemical inputs provides a more comprehensive  

understanding of patient health, thereby substantially boosting model accuracy and robustness in  

clinical settings.  

5.2.3 System Performance Comparison  

Table 8 shows the evaluation of system performance among Centralized Learning,  Baseline 

Federated Learning (FL), and the Proposed FL Framework, highlighting significant  distinctions. 

Centralized Learning requires the most time for training per epoch, taking 45.3  minutes, whereas 

Baseline FL and the Proposed FL Framework are more time-efficient, needing  12.8 and 14.2 

minutes, respectively. Regarding communication cost per round, Baseline FL and  the Proposed 

FL Framework have costs of 8.4 MB and 9.1 MB, respectively, with no data  available for 

Centralized Learning. Centralized Learning boasts the lowest inference latency at  82 ms, followed 

by Baseline FL at 156 ms and the Proposed FL Framework at 178 ms. Memory  consumption is 

highest in Centralized Learning at 12.4 GB, while Baseline FL and the Proposed FL Framework 

use 3.2 GB and 3.6 GB, respectively. Finally, the Proposed FL Framework offers  superior privacy 

protection, achieving a 52.1% success rate in membership inference attacks  (MIA), surpassing 

Baseline FL at 64.2% and Centralized Learning at 76.5%.  
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Table 8: System Performance 

Metric  Centralized Learning  Baseline FL  Proposed FL   

Framework 

Training time per 
epoch  (min)  

45.3  12.8  14.2 

Communication cost 
per  round (MB)  

N/A  8.4  9.1 

Inference latency (ms)  82  156  178 

Memory usage (GB)  12.4  3.2  3.6 

Privacy leakage (MIA   

success %)  

76.5  64.2  52.1 

 

 

5.2.4 Reinforcement Learning for Treatment  

Figure 2 shows the bar chart titled "Reinforcement Learning for Treatment: Treatment  

Outcomes by Approach", which presents a comparison of three treatment strategies: Standard  

Care, Guideline-Based, and RL-Optimized, evaluated across five outcome metrics. These metrics  

included the 30-day readmission rate (%), 90-day mortality rate (%), NYHA class improvement  

(%), adverse drug events (%), and changes in the quality of life score. The RL-Optimized  approach 

generally yielded more favorable results, demonstrating the lowest rates of 30-day  readmission 

and 90-day mortality, the highest improvement in NYHA class, and a comparable  rate of adverse 

drug events, along with a significant enhancement in the quality of life score  change when 

compared with the Standard Care and Guideline-Based approaches.  
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Figure 4: Reinforcement Learning for Treatment 
5.2.5 Privacy attack resistance  

Figure 5 shows the research assessing the resistance to privacy attacks among three  

methods—Centralized Learning, Baseline Federated Learning (FL), and the Proposed FL  

Framework—by measuring success rates (%) for Membership Inference, Reconstruction Attack,  

Model Inversion, and Property Inference. Lower percentages indicate stronger protection,  thereby 

highlighting the superior security of the proposed FL framework against these threats.  
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Figure 5: Privacy attack resistance  

6. Limitations and Challenges   

Despite the promising results of the proposed Federated Learning (FL) framework,  several 

limitations remain. The primary challenge was the representativeness of the dataset.  Although the 

study employed a diverse, multi-institutional cohort, it may not fully reflect the  

variability present in global patient populations, particularly in under resourced or non-Western  

healthcare settings. This gap raises concerns about the model's generalizability and fairness when  

applied in real-world scenarios beyond the scope of the current evaluation. Additionally, the non 

IID (non-independent and identically distributed) nature of data across institutions presents  

technical challenges for convergence, potentially impacting model consistency and performance.  

Another significant limitation is computational overhead. Although homomorphic encryption  and 

differential privacy are crucial for protecting patient data, they substantially increase  resource 

consumption. Smaller or rural hospitals may lack technical infrastructure to support  advanced 
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cryptographic techniques, hindering equitable adoption. Moreover, integrating  reinforcement 

learning for real-time therapy optimization, although effective, introduces  operational 

complexities, including model drift and the need for frequent updates. Deployment in  legacy 

healthcare systems might encounter resistance owing to integration challenges, lack of  technical 

expertise, and concerns about workflow disruption. Addressing these limitations is  essential for 

enabling broader and scalable implementation.  

7. Future Directions  

To address these limitations, future research should focus on the development of  

lightweight privacy-preserving techniques that offer strong protection without imposing  significant 

computational demands. This involves investigating efficient encryption schemes,  decentralized 

consensus mechanisms, and hardware-optimized models suitable for deployment in  low-resource 

settings. The framework could also benefit from modular design principles,  enabling the gradual 

adoption of components, such as explainability, personalization, and  privacy, based on institutional 

capacity. Creating open-source libraries and low-code platforms  can empower healthcare providers 

to implement federated AI solutions without requiring  extensive technical training. In addition, 

integrating real-time data from wearable devices offers  a promising avenue for enhancing CHF 

monitoring. This approach would facilitate continuous  at-home patient management, significantly 

reducing the need for hospital visits while supporting  proactive interventions. Longitudinal studies 

extending beyond a year are also crucial to validate  the framework's long-term clinical impact on 

mortality, readmission, and quality of life.  Policymakers and regulators should be involved in 

developing standardized validation protocols  and legal frameworks tailored to federated AI. As 

the global healthcare landscape becomes  increasingly data-driven, these enhancements will be vital 

for advancing equitable, secure, and  patient-centered AI healthcare systems. 

8. Conclusion   

The proposed Federated Learning framework represents a significant leap forward in the  

ethical application of AI to detect and manage Chronic Heart Failure. By employing techniques  

such as differential privacy and homomorphic encryption, the system not only safeguards patient  
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privacy, but also ensures regulatory compliance, facilitating collaborative learning across  

decentralized institutions. The integration of multimodal data, supported by explainable AI  

(FedXAI) and reinforcement learning, allows for dynamic and personalized treatment pathways.  

This approach achieves clinical performance comparable to centralized systems while  maintaining 

sub-200 ms latency for real-time responsiveness. Beyond its technical  accomplishments, the 

framework addresses the crucial issues of equity, interpretability, and trust,  which often hinder AI 

adoption in clinical settings. Through bias mitigation, institutional  fairness, and clinician-validated 

explanation tools, it offers a scalable model for inclusive  cardiovascular AI. Improvements in 

patient outcomes, such as earlier CHF detection and reduced  readmissions, highlight its practical 

viability. As the healthcare sector continues to digitize, such  federated, privacy-preserving 

solutions will be vital in aligning innovation with ethics and  providing intelligent care without 

compromising patient rights or institutional autonomy.  
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