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Abstract 

Precise determination of ripeness in fruits is essential for maximizing harvesting choices, 

optimizing supply chain efficiency, and reducing post-harvest loss. Conventional human-based 

ripeness evaluation tools are time-consuming, prone to errors, and non-scalable. Advances in deep 

learning and computer vision have transformed the classification of ripeness via computer-based, 

non-destructive methods. This review discusses cutting-edge artificial intelligence (AI) models, 

such as convolutional neural networks (CNNs), vision transformers, and deep hybrid learning 

architectures, for ripeness detection. The research also explores object detection techniques like 

Faster R-CNN, YOLOv8, and Mask R-CNN, and sophisticated segmentation models for precision 

agriculture. Multi-modal AI approaches such as hyperspectral, near-infrared, and thermal imaging 

have also improved classification accuracy. Self-supervised and few-shot learning methods are 

also explored as viable solutions for model training with sparse labeled data, enhancing the 

adaptability of AI-based fruit ripeness detection systems. This extensive review showcases the 

promise of AI in smart farming applications, with a focus on future research directions such as 

dataset standardization, real-time inference, and edge AI deployment for large-scale agricultural 

automation. 

Keywords: - Smart Farming, Fruit Quality, Automated Sorting & Grading, Fruit Ripeness, 

Artificial Intelligence. 
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Fruit ripening is a pivotal phase in the fruit growth cycle when they reach the best texture, flavor, 

color, aroma, and nutritional quality. Ripening is a process of physiological and biochemical 

changes that include chlorophyll breakdown, carotenoid and anthocyanin buildup (responsible for 

color changes), and enzymatic pectin breakdown that softens the fruit. Chemical changes, such as 

the increase in sugar content, are also part of the process. content (Brix level) and reduction of 

acidity, which further affect palatability of fruits. Furthermore, climacteric fruits such as bananas, 

apples, and tomatoes release ethylene, a plant hormone that induces ripening at a faster rate, 

whereas non-climacteric fruits such as citrus and strawberries follow slow ripening without a 

drastic ethylene burst. Fruit ripeness needs to be sensed for agriculture, food supply chain, and 

customer satisfaction. Commercial agriculture requires correct ripeness evaluation optimizes 

harvest timing, promoting better quality yield and avoiding post-harvest losses. Ripeness 

determines processing methods, storage requirements, and product quality in the food industry, 

affecting sustainability and profitability. Ripeness affects freshness, flavor, and nutritional content 

for consumers, influencing purchase decisions. Inefficient harvesting timing, either early or late, 

may cause economic losses, food losses, and unfavorable marketability, creating efficient ripeness 

detection as a requirement in contemporary agriculture. 

Fruit ripeness detection has been based in the past on manual inspection, which is human-

dependent and thus prone to errors and inconsistencies. Environmental conditions such as sunlight 

exposure, temperature, humidity, and soil conditions further complicate this process. Fruits such 

as mangoes, avocados, and melons need invasive techniques for detection of ripeness, which 

causes damage. Manual inspection is slow, labor-consuming, and expensive, particularly in large-

scale farming. With the global shortage of agricultural labor on the rise, human inspection is no 

longer sustainable. Ripeness detection needs to be automated to enhance accuracy, efficiency, and 

scalability in agriculture. 

Artificial Intelligence (AI) and computer vision are transforming the detection of fruit ripeness 

beyond the constraints of human inspection. Deep learning, especially Convolutional Neural 

Networks (CNNs), enables real-time, precise classification of ripeness through color, texture, and 

shape analysis. AI-based computer vision systems employ image processing algorithms to scan 

fruit features across various stages of ripening, identifying subtle signs of ripeness. This AI 

integration within smart farming improves precision farming, streamlines the supply chain, and 

facilitates robotic fruit-picking technology, decreasing dependency on manpower and enhancing 

post-harvest processing. 

This review explores deep learning and computer vision techniques for automated fruit ripeness 

detection. It discusses state-of-the-art models like CNNs, Vision Transformers, and hybrid AI 

architectures, compares different techniques like YOLO, Faster R-CNN, and Mask R-CNN, and 

explores multi-modal approaches like hyperspectral, near-infrared, and thermal imaging. The 
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study also discusses real-world applications of AI in smart farming, automated sorting, and 

consumer-facing ripeness detection apps. Key challenges include dataset limitations, real-time 

processing constraints, and model interpretability. The paper provides valuable insights for 

researchers and industry professionals. 

This article is written in a manner to give a broad overview of AI-based detection of fruit ripeness. 

Section 2 examines the biological and chemical determinants of ripeness, looking into the changes 

that occur physiologically while a fruit ripens and their relevance to detection mechanisms. Section 

3 goes into the architectures of deep learning and computer vision methodologies, how the AI 

model categorizes ripeness stages very accurately. Section 4 goes over datasets and benchmarking 

approaches, emphasizing publicly known datasets and main evaluation metrics adopted in AI-

based classification. Section 5 elaborates on real-world uses, such as IoT-based monitoring, AI-

enabled sorting systems, and smartphone-based ripeness measurement. Section 6 outlines the main 

challenges and future research areas, focusing on issues of data scarcity, computational efficiency, 

and the demand for explainable AI (XAI) in agriculture. Finally, Section 7 provides an overview 

of conclusions and possible advances, stressing how AI continues to innovate fruit ripeness 

detection and intelligent agriculture. 

2. BIOLOGICAL, CHEMICAL, AND SPECTRAL INDICATORS OF FRUIT RIPENESS 

Fruit maturity is based on a series of biological and chemical markers that determine its texture, 

taste, and general quality as indicated in Figure 1. Biological indicators are color change, softening 

of texture, aroma development, plant detachment, and flavor enhancement, all of which are 

phenotypic features that indicate maturation. 
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Fig.1: Classification of Fruit Ripeness Indicators: Biological vs. Chemical Factors 

Chemical indicators, on the other hand, involve internal compositional changes such as increased 

sugar content (SSC), acidity reduction (change in pH), ethylene formation, rate of respiration, and 

enzymatic activity, that control the ripening process at the molecular level. It is important to 

understand these indicators in agriculture, food processing, and post-harvest management 

to obtain maximum fruit quality and shelf life. 

A. Biological and Visual Ripeness Indicators 

Ripeness of the fruit is a vital quality determinant that influences both consumer acceptance and 

postharvest handling. Multiple biological and visual parameters express the physiological 

alterations experienced in the course of maturation. Amongst them, color change is among the 

most noteworthy, wherein the breakdown of chlorophyll causes the formation of carotenoids 

(yellow-orange pigments) or anthocyanins (red-purple pigments). Texture alteration, spurred by 

enzymatic degradation, plays a role in the softening and acceptability of the fruit. Size, shape, and 

odour also develop, with some fruits releasing volatile organic compounds (VOCs) that signal 

ripeness. While these markers are crucial, the variability of the markers in different species and 

environmental conditions does not make the detection of ripeness easy through manual measures, 

warranting the application of AI to create automated tools. Ripening is mainly ethylene-regulated, 

a plant hormone influencing texture, color, and metabolic process changes in fruit. Research has 
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demonstrated that ETH-treated mangoes have higher malondialdehyde (MDA) concentrations and 

lower firmness, ETH treatment fostering ripening by activating ACS and ACO enzyme activity 

[1]. In addition to hormonal regulation, RNA splicing is also important in pigmentation and 

softening of fruit, illustrating evolutionary flexibility through genetic adjustment [2]. Tomato 

ripening was investigated in a study, which identified the pectinase enzymes as being responsible 

for texture alteration, and indicated that total soluble solids (TSS), weight loss, respiration rate, 

and redness hue all rose with maturity. The results indicate that optimal picking should be two to 

three weeks after pollination, and keeping it at 16°C will ensure freshness [3]. The same study in 

melting-flesh peaches singled out polygalacturonase (PG) genes as playing the central regulatory 

role for pectin solubilization and softening of fruits. Down-regulation of PpPG21 and PpPG22 

inhibited ripening, and safeguarding firmness prolonged shelf life [4]. Strategies for managing 

postharvest ripening have searched for natural treatments such as 1% procyanidin solution 

(treatment with PA). This procedure efficiently preserves pulp firmness, chlorophyll content, and 

peel color and minimizes the accumulation of TSS, the production of ethylene, and enzymatic 

activities [5]. Likewise, tests on sweet cherry cultivars indicate three firmness phases, evidencing 

a great correlation between skin color, firmness, and mass. They indicate that through the 

monitoring of a single variable, it becomes possible to provide precise ripeness prediction and 

enhanced quality control [6]. Through the combination of biochemical markers and AI-based 

analytical instruments, the automation of ripeness determination is becoming more and more 

possible, with potential for increased efficiency in harvest management, supply chain logistics, 

and postharvest preservation. 

Volatile organic compounds (VOCs) are important indicators of fruit ripeness and quality. 

Although artificial scent screening systems replicate the mammalian scent system, with low 

sensitivity and pattern recognition, their uses are limited for widespread applications. To overcome 

these limitations, a portable ripeness prediction system integrates colorimetric sensing and deep 

convolutional neural networks (DCNNs). With the use of gas chromatography-mass spectrometry 

(GC-MS), it detects individual VOCs from mango, peach, and banana at various stages of ripening. 

Using 25 gas-sensitive dyes, the system creates distinctive smell fingerprints, processed through 

DenseNet, with 97.39% validation accuracy and 82.20% test accuracy. Such highly accurate, non-

destructive, and affordable system improves real-time ripeness sensing [8]. In addition to fruit 

ripeness, VOC monitoring is also crucial for agricultural quality control, e.g., mildew detection in 

stored grains. Though GC-MS is the standard, its prohibitive cost and low speed of detection make 

it imperative to adopt E-nose and AIdriven sensory analysis, enhancing real-time observation and 

cost-effectiveness in smart agriculture [9]. AI-driven computer vision methods are transforming 

fruit maturity testing, substituting manual checks with NMR, NIR, thermal imaging, and 

hyperspectral scanning as shown in Table 1. The technologies are non-invasive, providing 

accuracy and scalability in food processing. Combining biosensors with AI makes it even more 
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accurate, allowing automated, real-time maturity detection. Future innovations will need 

standardization, data privacy practices, and field deployment strategies, making agricultural 

practices efficient and sustainable [10]. 

Table 1 Comprehensive Fruit Ripeness Indicators 

Indicator Biochemical 

Process 

Detection 

Methods 

Impact on 

Ripeness 

Influencing 

Factors 

Referenc

e 

Color 

Transformation 

Chlorophyll 

degradation, 

carotenoid and 

anthocyanin 

synthesis 

Spectroscopy, 

image analysis 

Indicates 

transition 

from 

immature to 

ripe state 

Light 

exposure, 

genetic traits, 

storage 

conditions 

[1] 

Texture 

Changes 

Enzymatic 

breakdown of 

cell walls and 

softening 

Texture 

analyzers, 

compression 

tests 

Softening 

signals 

increased 

palatability 

Enzyme 

activity, 

humidity, 

temperature 

[2] 

Size & Shape Cell expansion 

and 

morphological 

evolution 

Morphometric 

analysis, 3D 

imaging 

Growth 

trends 

define 

harvest 

readiness 

Genetic 

traits, growth 

environment 

[3] 

Aroma Emission of 

volatile organic 

compounds 

(VOCs) 

Gas 

chromatograph

y, e-nose 

technology 

Determines 

fruit flavor 

and 

consumer 

appeal 

Fruit variety, 

ripening 

stage, 

storage 

duration 

[4] 

Ethylene 

Influence 

ACS & ACO 

enzyme 

activation, 

ethylene 

biosynthesis 

Ethylene 

sensors, 

biochemical 

assays 

Triggers 

faster 

ripening and 

reduced 

firmness 

Ethylene 

concentratio

n, storage 

temperature 

[5] 

RNA Splicing & 

Gene Control 

Alternative 

splicing 

influencing 

RNA 

sequencing, 

gene 

Regulates 

fruit 

pigmentatio

Genetic 

mutations, 

environment

al stress 

[6] 
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gene 

expression 

expression 

profiling 

n and 

softening 

Pectinase 

Activity 

Pectin 

degradation 

affecting fruit 

firmness 

Enzyme 

activity assays, 

pectin 

quantification 

Affects 

shelf life 

and 

transportati

on stability 

Pectinase 

enzyme 

activity, fruit 

type 

[7] 

Polygalacturona

se (PG) 

Expression 

Regulation of 

pectin 

solubilization 

and 

depolymerizati

on 

Molecular 

assays, 

transcriptomic 

analysis 

Delays or 

accelerates 

fruit texture 

changes 

Gene 

expression 

regulation, 

storage 

conditions 

[8] 

Procyanidin 

Treatment 

Effects 

Inhibition of 

oxidative stress 

and enzymatic 

activity 

Chemical 

assays, 

spectroscopy 

Extends 

storage time 

while 

maintaining 

firmness 

Antioxidant 

content, 

post-harvest 

treatments 

[9] 

Firmness & 

Sweet Cherry 

Development 

Firmness 

fluctuation 

correlated with 

color and mass 

Texture 

analyzers, 

colorimeters 

Defines 

maturity 

phases for 

better 

quality 

control 

Genetic 

variation, 

environment

al adaptation 

[10] 

Aroma & Gas 

Emissions 

Gas emission 

variability, 

sensor 

accuracy 

GC-MS, AI-

based scent 

recognition 

Enhances 

non-

invasive 

ripeness 

assessment 

Gas emission 

variability, 

sensor 

accuracy 

[8] 

Computer 

Vision for 

Maturity Index 

AI-driven 

spectral and 

thermal 

analysis 

NMR, NIR, 

thermal 

imaging, 

computer 

vision 

Enables 

automated 

maturity 

assessment 

Advancemen

ts in AI, 

imaging 

technology 

[10] 

 



   

       

   

 

 

   

   

Vol 14 Issue 5, May 2025                                                  ISSN 2456 – 5083                                                  Page 399 
  

 
 
 

 

B. Chemical and Internal Ripeness Indicators  

1) Sugar-to-Acid Ratio (Brix Measurement) 

The sugar-to-acid ratio (Brix measurement) is a critical determinant of fruit flavor and quality, 

directly influencing consumer preference and breeding strategies. In plums (Prunus salicina and 

Prunus domestica), glucose, fructose, malic acid, and quinic acid were identified as primary 

contributors to sweetness and acidity. Among these, sucrose plays a dominant role in flesh 

sweetness, whereas the peel contains 5.5 times more phenolics, contributing to its astringency. 

Principal Component Analysis (PCA) identified eight key flavor factors, leading to the 

development of an integrated flavor rating system for plum breeding optimization [11]. Similarly, 

in ‘Xiahui 6’ peach trees, reducing the fruit load was found to enhance the sugar-to-acid ratio, 

resulting in better fruit quality and earlier ripening. A 50% fruit load was determined to be optimal 

for balancing yield and quality under field conditions [12]. In spine grape (Vitis davidii Foëx), 

PCA and cluster analysis classified 15 cultivars based on their total sugar, organic acid, and 

phenolic content, which ranged from 81.80 to 154.89 mg/g, 8.02 to 15.48 mg/g, and 5.58 to 20.12 

mg/g, respectively. The ‘Red Xiangzhenzhu’ cultivar exhibited the highest quality, whereas 

‘Hongjiangci10’ and ‘Ziluolan’ ranked lowest. Further, cluster analysis grouped cultivars into 

three quality categories, providing a structured evaluation system for grape breeding and utilization 

[13]. 

2) Ethylene Production in Climacteric Fruits 

Climacteric fruits undergo ethylene-mediated ripening, which poses challenges in shelf-life 

extension and quality preservation. Ethylene, a crucial plant hormone, triggers increased 

respiration rates, accelerating ripening in bananas and tomatoes, while non-climacteric fruits (e.g., 

oranges) remain unaffected [14]. Various postharvest strategies have been developed to delay 

ethylene-induced ripening, including ethylene inhibitors, adsorbents, and catalytic oxidation-based 

scavengers. These strategies influence shelf life, sensory attributes, and volatile compound 

retention, ensuring improved postharvest quality. A study on open and closed storage 

environments found that bananas and tomatoes deteriorated within a week, regardless of the 

storage conditions, confirming their climacteric nature. However, tomatoes stored in a closed 

environment exhibited greater longevity. Additionally, chemical agents such as carbide were 

examined for their role in accelerating orange ripening, where higher concentrations (10g) resulted 

in faster yellowing. Bananas were identified as significant ethylene producers, influencing the 

ripening of nearby fruits. These findings highlight the crucial role of ethylene in postharvest fruit 

management and the importance of optimized storage techniques and ethylene control strategies 

[15]. 
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3) pH Variation Across Ripening Stages 

Advancements in food science and technology have led to the development of biopolymer-

incorporated organic dye indicators for monitoring fruit ripeness. In this study, methylcellulose 

films containing pH-sensitive dye-based indicators were prepared to detect CO₂ levels inside fruit 

packaging. As the fruit ripened, the metabolic activity released CO₂, causing pH variations, which 

were reflected in the color changes of the indicator labels. In ‘Nam Dok Mai Si Thong’ mangoes, 

this system successfully correlated CO₂ levels with ripening stages at different storage 

temperatures. Over time, the indicator labels changed color from blue (unripe), to green (half-ripe), 

and then to yellow (fully ripe), demonstrating a real-time monitoring system for fruit ripeness. 

Additionally, firmness decreased from 44.54 to 2.01 N, and titratable acidity (TA) reduced from 

2.84% to 0.21%, while soluble solid content (SSC) increased from 10.70% to 18.26%, confirming 

fruit ripening trends [16]. To better understand the relationship between different ripening 

indicators, Figure 2 presents an integrated analysis of the sugar-to-acid ratio, ethylene production, 

pH variation, and firmness retention in various fruits. 

 

Fig. 2: Multi-Factor Analysis of Fruit Ripening Indicators- (a) Sugar-to-Acid Ratio in 

Plums, (b) Ethylene Production in Climacteric Fruits, (c) pH Variation Across Mango 

Ripening Stages, (d) Effect of Dropping on Tomato Firmness 
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Figure 2 is a detailed breakdown of fruit ripening markers, showing major biochemical and 

physical alterations during to be present in the cells. Subfigure (a) shows the ratio of sugar to acid 

in plums, illustrating the percentage to the total sweetness and acidity, which are important for 

flavor creation and breeding purposes. Subfigure (b) plots the levels of ethylene production in 

climacteric fruits, such as bananas and tomatoes, highlighting their function in hastening ripening 

and postharvest deterioration, with bananas particularly affecting the ripening of surrounding 

fruits, highlighting the requirement for controlled storage conditions. Subfigure (c) depicts pH 

change throughout mango ripening stages, indicating a progressive rise in pH levels when mangoes 

go from unripe to completely ripe, paralleling a decrease in acidity and increase in sweetness, 

which is pivotal for the setting of harvest times and storage conditions. Subfigure (d) looks at the 

influence of mechanical damage (dropping) on tomato firmness, showing that retention of firmness 

greatly decreases as tomatoes ripen, highlighting the necessity for gentle handling to reduce 

damage, retain shelf life, and keep fruit quality. Figure 2 collectively presents an integrated visual 

overview of biochemical and physical ripening markers, aiding postharvest management, breeding 

programs, and fruit quality evaluation for commercial production. Novel analytical methods have 

been investigated in recent studies to precisely identify ripening stages. Electronic Nose (e-nose), 

ATR-FTIR Spectroscopy, and Image Analysis (IA) were used to differentiate between half-red 

and fully red strawberries (cv Sabrosa, commercially named Candonga). Principal Component 

Analysis (PCA) of e-nose, ATR-FTIR, and IA data showed different clustering patterns, proving 

the effectiveness of these non-destructive analytical tools [17]. Likewise, a novel aggregative 

index (AQI) for grape quality evaluation was established using visible-near-infrared (Vis-NIR) 

spectroscopy and chemometric methods. PLSR, SVR, and CNN models were used for predictive 

analysis, with high accuracy (Rp² = 0.972 for Cabernet Sauvignon and Rp² = 0.989 for Muscat 

Kyoho grapes). These are efficient, non-destructive procedures for checking stages of maturity in 

fruit and scheduling harvest optimally, most especially in winemaking industry [18]. Tomatoes are 

perishable crops that suffer mechanical injury during handling and picking, including falling off 

and bruising. Research measuring Vanessa F1 Hybrid tomatoes of varying stages of ripeness 

(Breaker (II) and Red Ripe (VI)) indicated that fallen tomatoes had more internal bruising and 

quicker decay. Firmness, total soluble solids (TSS), titratable acidity, respiration rate, vitamin C, 

and mineral contents (K and Ca) decreased markedly over 15 days of storage, especially at the Red 

Ripe stage. Storage at 5°C enhanced fruit retention and alleviated damage severity. The present 

study points out the necessity of proper postharvest handling methods to prevent mechanical 

damage and improve tomato shelf-life and marketability [19]. 
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3. NON-DESTRUCTIVE SPECTRAL TECHNIQUES 

a. Near-Infrared (NIR) and Hyperspectral Imaging. 

Near-Infrared (NIR) Hyperspectral Imaging (HSI) is a potentially non-destructive method for 

estimating the protein content and water content in some agricultural commodities. In soybean 

seeds, NIR-HSI was used to estimate protein content in 1491 seed samples of three types with low, 

medium, and high protein concentrations. Partial least square regression (PLSR) was used to 

construct a calibration model with 70% spectral information, calibrated against the remaining 30%, 

obtaining an R² of 0.92 and an RMSE of 1.08%, validating its ability for fast assessment in 

processing lines [20]. Likewise, NIR-HSI was utilized to estimate potato flour noodles for protein 

content. The optimized PLSR model using orthogonal signal correction (OSC) and competitive 

adaptive reweighted sampling (CARS) showed good predictive accuracy with an R² of 0.9606 and 

0.8925 in the calibration and prediction sets, respectively. The visualization of protein distribution 

also added to its power as a non-destructive analytical technique [21]. For the prediction of 

moisture content (MC) in peanut kernels, hyperspectral data in the 900–1700 nm range were used, 

along with PLSR modeling. Optimized regression model yielded R² values of 0.9357, 0.9133, and 

0.9445 for calibration, validation, and prediction, respectively, showing sound performance. A 

map of moisture content distribution was obtained through pixel-wise hyperspectral analysis, 

highlighting the capabilities of NIR-HSI in the estimation of moisture in food and agriculture 

applications [22]. 

 

Fig.3: Workflow of Non-Destructive Imaging and Spectroscopy Techniques 

Figure 3 shows the workflow of non-destructive imaging and spectroscopy methods, with 

emphasis on Near-Infrared Hyperspectral Imaging (NIR-HSI) and Raman Spectroscopy. The 
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workflow is separated into two different paths, each designed for particular uses in food quality 

analysis, material recognition, and environmental monitoring. In the NIR-HIS path, data 

acquisition is done in the 900–1800 nm range, recording hyperspectral information from 

agricultural samples. This spectral information is processed using sophisticated processing with 

Partial Least Squares Regression (PLSR), and optimization methods like Orthogonal Signal 

Correction (OSC) and Competitive Adaptive Reweighted Sampling (CARS). The data is then 

refined for protein and moisture content prediction, which is crucial for determining the quality of 

food items like soybeans, potato flour noodles, and peanut kernels. Alternatively, the Raman 

Spectroscopy route entails data acquisition at 784 nm, focusing on material composition. The 

resulting data is additionally optimized by using fluorescence labeling to reduce background noise 

and increase detection precision. This analyzed data is then utilized in diverse material and 

environmental analyses such as identifying microplastics in seawater, verifying tea adulteration, 

and conservation research on temporal paper degradation. Generally, Figure 3 is an organized 

depiction of how non-destructive imaging and spectroscopy methods are employed for prompt and 

precise analysis. These methodologies provide very high precision and efficiency and are therefore 

irreplaceable in scientific research, food safety, environmental monitoring, and material 

conservation 

b. Raman Spectroscopy and Fluorescence Imaging. 

Raman spectroscopy and fluorescence imaging have been used extensively in food authenticity 

and environmental monitoring. For Tieguanyin tea, a fluorescence hyperspectral technique was 

employed to identify adulteration by Benshan tea at varying concentrations (0%–50%). Through 

the use of SG-CARS-SVM, the 2-class model reached 100% accuracy, and the 6-class model 

achieved 94.27% accuracy, validating the method's capacity for detecting and quantifying 

adulteration effectively [23]. Micro-Raman and luminescence spectroscopy were used integrated 

with morphological analysis to evaluate degradation patterns in books dating from 1873 to 2021. 

Highresolution Raman and fluorescence mapping allowed for micron-scale imaging of aging 

markers, making it particularly useful for analyzing ancient and fragile materials without causing 

damage [24]. Raman spectroscopy was also used for monitoring marine pollution, particularly 

detection of microplastics in seawater. Confocal Raman spectroscopy based on fluorescent 

labeling allowed quick microplastic (PE, PP, PS) identification in the 60–500 μm size range, 

enhancing detection efficiency and accuracy. Dual-wavelength laser excitation (784/785 nm) and 

differential Raman spectroscopy effectively eliminated fluorescence interference, making efficient 

microplastic screening possible in seawater. The technique is beneficial for marine pollution 

control and ecological risk measurement [25]. Such sophisticated spectroscopic and imaging 

technologies offer quick, nondestructive, high-accuracy measurements of food quality 

determination, materials preservation, and monitoring of environmental changes, enabling better 

efficiency and accuracy in many sectors. 
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4. CHALLENGES IN FRUIT RIPENESS ASSESSMENT AND MONITORING 

a. Variability in Biological Indicators Across Fruit Types 

Fruit is an important global agricultural produce that feeds millions. The fruit produce supply chain 

necessitates high standards of quality tests to ascertain freshness, flavor, and safety. One of the 

key factors for determining fruit quality is its level of ripening, which was classically sorted 

manually by subject matter experts in the field. This time-consuming and human error-prone 

methodology requires automation for improved efficiency and accuracy. There have been new 

developments in machine learning (ML) and deep learning have greatly enhanced machine-based 

fruit ripeness classification. In contrast to conventional feature engineering methods, deep learning 

models are capable of processing raw data without the necessity for intricate, crop-specific 

engineered features. Computer vision-based classification methods using image descriptors and 

spectral analysis have been investigated in several studies to improve fruit ripeness assessment 

[26]. The use of computer vision methods has transformed the food processing sector, substituting 

manual maturity evaluation with automated systems. Computational breakthroughs like Nuclear 

Magnetic Resonance (NMR), Near-Infrared Spectroscopy (NIR), thermal imaging, and 

hyperspectral imaging have been widely used to ascertain fruit and vegetable maturity indices. 

These non-destruction methods enhance precision and effectiveness, while the incorporation of 

biosensors and artificial intelligence (AI) further enhances maturity evaluation processes. With 

advancements in the field, cooperation between specialists in Diverse fields will become critical 

for standardization, considerations of data privacy, and global adoption of AI driven maturity 

assessments [27]. 

b. Challenges in Automated Harvesting 

In recent decades, intelligent fruit harvesting robots have been developed to bridge the gap between 

food demand and labor shortages. However, their commercial adoption remains limited, primarily 

due to technical challenges in system performance, visual perception, and fruit detachment 

mechanisms. Studies analyzing existing harvesting robots have highlighted limitations in Table 2, 

shows adaptability issues to orchard environments and the efficiency of robotic grasping 

mechanisms. Future research directions emphasize the need for improved robotic vision, dexterous 

manipulation, and AI-powered decision-making to enhance the effectiveness of automated 

harvesting systems [28]. Traditional ripeness estimation relies on manual sampling and chemical 

analyses, which are time-consuming, costly, and destructive. The advent of machine vision 

techniques has introduced faster, non-invasive, and cost-effective methods for large-scale ripeness 

assessment. While these methods have been widely applied, particularly in grape ripeness 

evaluation, further advancements are needed to enhance real-time, in-field maturity monitoring. 

Recent studies have demonstrated the potential of machine vision-integrated grape harvesting 

robots, capable of on-the-spot ripeness evaluation to optimize harvesting efficiency [29]. Beyond 



   

       

   

 

 

   

   

Vol 14 Issue 5, May 2025                                                  ISSN 2456 – 5083                                                  Page 405 
  

 
 
 

 

agriculture, AI and ML have found significant applications in biological treatment technologies 

such as anaerobic digestion, composting, and insect farming. The complexity of biological 

treatment processes introduces challenges in process stability and efficiency, which ML models 

address by enabling real-time monitoring, predictive modeling, and optimization of treatment 

parameters. Studies indicate that artificial neural networks, tree-based models, support vector 

machines, and genetic algorithms have shown strong performance in biological treatment 

prediction and process enhancement [30]. In commercial fruit ripening, AI-driven models have 

been explored to enhance the uniformity and quality of large-scale ripening processes. A study 

investigating banana ripening in refrigerated marine containers demonstrated that ML-based 

predictive models could optimize peel color uniformity and pulp temperature by controlling CO₂ 

and O₂ gas concentrations. These data-driven approaches significantly improved process 

monitoring and cost-effectiveness, demonstrating strong correlations between atmospheric gas 

levels and ripening consistency. For the first time, ML algorithms were used to predict oxygen 

levels based on atmospheric conditions, providing an alternative to continuous monitoring through 

direct gas measurements. The application of Long Short-Term Memory (LSTM) regression 

resulted in low root-mean-square errors (0.033 and 0.202) and high R² values (0.999 and 0.959), 

proving its robustness in banana ripening prediction [31]. 

table 2 Challenges in Ripeness Indicators 

Challenge 

Category 

Specific 

Challenge 
Key Issues 

Proposed 

Solutions 

Application

s & Impact 

Reference

s 

Variability in 

Biological 

Indicators 

Traditional 

ripeness 

classification is 

labor-intensive 

and prone to 

errors. 

Dependence 

on human 

expertise, 

inconsistency

, inefficiency 

in large-scale 

farms. 

AI and deep 

learning 

models for 

automated 

classification

. 

Enhances 

fruit quality 

control in 

food supply 

chains, 

reduces 

human error. 

[26] 

Advancements 

in 

Computationa

l Techniques 

Automating 

maturity index 

assessment 

using NMR, 

NIR, and 

machine vision. 

Limited 

accuracy, 

high cost, 

requirement 

of 

standardized 

imaging 

techniques. 

Integrating 

biosensors 

and AI to 

improve real-

time 

analysis. 

Faster, cost-

effective 

ripeness 

detection in 

food 

processing 

and 

agriculture. 

[27] 
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Limitations in 

Automated 

Harvesting 

Intelligent 

fruit-picking 

robots are 

underdevelope

d for 

commercial 

use. 

Performance 

limitations, 

environmenta

l adaptability, 

fruit 

detachment 

complexity. 

AI-powered 

robotic 

vision, 

improved 

grasping 

mechanisms. 

Addresses 

labor 

shortages, 

increases 

efficiency in 

fruit 

harvesting. 

[28] 

Limitations of 

Chemical 

Assessments 

Ripeness 

estimation via 

chemical 

analysis is 

time-

consuming and 

destructive. 

Requires 

manual 

sampling, 

expensive 

testing, 

inconsistency 

in large-scale 

monitoring. 

Machine 

vision 

techniques 

for non-

destructive 

analysis. 

Accelerates 

decision-

making in 

vineyards, 

improves 

efficiency in 

large farms. 

[29] 

Biological 

Treatment 

and AI 

Integration 

AI-enhanced 

biological 

treatment of 

organic waste 

for 

sustainability. 

Complexity 

of biological 

processes, 

inconsistent 

outputs, 

environmenta

l impact. 

Machine 

learning 

models for 

real-time 

monitoring 

and 

optimization. 

Enhances 

waste 

management

, increases 

renewable 

energy 

production. 

[30] 

AI in Large-

Scale Ripening 

Predictive AI 

models for 

banana 

ripening in 

refrigerated 

containers. 

Lack of 

automation in 

ripening 

monitoring, 

difficulty in 

achieving 

uniformity. 

AI-driven 

atmospheric 

control, gas 

concentratio

n monitoring. 

Optimizes 

fruit 

preservation 

in logistics, 

reduces post-

harvest 

losses. 

[31] 

 

5.  ADVANCES IN DEEP LEARNING FOR FRUIT RIPENESS DETECTION 

a. Overview of Deep Learning Architectures 

Deep learning architectures have significantly transformed image classification, natural language 

processing, and predictive analytics. Convolutional Neural Networks (CNNs), Vision 
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Transformers (ViTs), and Hybrid Deep Learning models are among the most prominent 

advancements. Each of these architectures has specific strengths, making them suitable for 

different applications such as medical diagnosis, agriculture, remote sensing, sentiment analysis, 

and disaster prediction. 

i. Convolutional Neural Networks (CNNs) 

CNN architectures such as ResNet, EfficientNet, and MobileNet have become the foundation of 

image classification across multiple sectors. These networks extract hierarchical features, enabling 

robust medical, agricultural, and industrial applications. CNNs have been particularly effective in 

medical diagnosis, where a hybrid model combining EfficientNet-B0, EfficientNet-B2, and 

ResNet50 achieved 99.14% accuracy in skin disease classification using the Kaggle Skin Diseases 

Image Dataset (27,153 images) [33]. This model leveraged CNN-based feature extraction and 

fusion mechanisms to enhance classification precision, demonstrating strong potential for 

automated dermatological diagnosis. In agriculture, CNNs play a crucial role in disease detection 

and classification. A comparative study tested six CNN architectures (DenseNet121, InceptionV3, 

MobileNetV2, ResNeXt101, ResNet152V, and SE-ResNeXt101) on a dataset of nine rice diseases 

in Bangladesh. The study also introduced transfer learning and an ensemble model (DEX: 

DenseNet121, EfficientNetB7, Xception), where the ensemble approach achieved 98% accuracy, 

significantly outperforming individual models. Additionally, transfer learning increased 

classification accuracy by 17%, making CNNs highly effective in real-time agricultural disease 

detection [34]. CNN-based models continue to evolve, improving classification accuracy, feature 

extraction, and computational efficiency. Their applications in medical imaging, precision 

farming, and industrial automation highlight their ability to process large datasets efficiently, 

making them indispensable in various fields [32]. 

ii. Transformer Models (Vision Transformers, Swin Transformer) 

While CNNs have reigned supreme, Vision Transformers (ViTs) are starting to prove themselves 

as strong contenders for computer vision tasks. While CNNs rely on local spatial hierarchies, ViTs 

employ self-attention mechanisms to examine global interactions in images. Yet, transformers tend 

to be hungry for large-scale training sets and are weak at local feature extraction, resulting in the 

emergence of Hybrid Vision Transformers (CNN-Transformer models). Hybrid architectures 

merge CNN-based local feature extraction with transformer-based global attention mechanisms 

greatly enhancing performance on image classification and object detection [35]. 

The medical community has also started to embrace transformers since they have been shown to 

perform at or above CNN levels in many medical imaging tasks. Nonetheless, transformers require 

large labeled datasets, which complicate their use in specialized medical imaging. One of the 

solutions suggested is self-supervised learning via pretraining on large-scale, unlabeled medical 
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datasets with subsequent fine-tuning for individual imaging tasks. This method has the ability to 

transcend data sparsity, increase model generalization, and enhance diagnostic accuracy [36]. 

Transformers have attracted attention in remote sensing, with more than 60 studies implementing 

ViTs in Very High-Resolution (VHR) imagery, hyperspectral processing, and synthetic aperture 

radar (SAR) imagery. These models are capable of more advanced long-range spatial feature 

learning, and as such, are beneficial for earth observation, geospatial intelligence, and machine 

vision-based automated satellite image interpretation [37]. The continuous innovation of 

transformers, especially hybridization with CNNs, provides evidence of increasing influence in all 

medical imaging, remote sensing, and industrial vision tasks. As computational performance 

continues to improve and pretraining methods improve, transformers are likely to take a dominant 

position in deep learning-based vision tasks. 

iii. Hybrid Deep Learning Models (CNN-RNN, Attention Mechanisms) 

Hybrid deep learning models integrating CNNs, Recurrent Neural Networks (RNNs), and attention 

have been designed to deal with sequential data, deepen predictive analytics, and enhance NLP-

based applications. The models are particularly adept at sentiment analysis, text classification, 

multilingual processing, and disaster prediction. For sentiment analysis, a hybrid RecogNet-LSTM 

+ CNN model incorporating attention mechanisms revealed higher performance in aspect-based 

sentiment classification. By combining explicit knowledge from external databases, the model 

greatly enhanced aspect categorization accuracy, providing useful insights for opinion mining and 

consumer feedback analysis [38]. Hybrid CNN-RNN models also benefit text classification. Two 

hybrid models, CBAO (Convolutional Bi-LSTM with Attention) and CABO (Convolutional 

Attention Mechanism with BiLSTM), were evaluated on several datasets. The CBAO model 

attained 92.72% accuracy on the IMDB dataset, outperforming traditional methods. These models 

exhibited strong learning ability in natural language processing, document classification, and entity 

recognition [39]. In multilingual text recognition, a CNN-RNN hybrid model with an attention 

mechanism was especially proposed for Arabic image text recognition. Due to the complexity of 

Arabic script, involving variance in font, orientation, and segmentation, this method effectively 

enhanced text extraction and recognition accuracy. With the integration of sequential feature 

learning with attention-based processing, the model significantly performed better than 

conventional CNN-only architectures [40]. Hybrid models have also proved effective in 

earthquake forecasting, where sequential dependencies and long-term learning of features are 

paramount. A CNN-BiLSTM model, with attention mechanism and zero-order hold (ZOH) 

preprocessing, was used on earthquake data from nine Chinese regions. The model was able to 

accurately predict earthquake magnitude and frequency and show better forecasting ability 

compared to traditional statistical approaches [41]. These combined architectures increase pattern 

recognition, predictive analysis, and real-time decision-making in a variety of disciplines. Their 
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combination with attention mechanisms and recurrent processing guarantees enhanced context-

awareness and sequential modeling, which makes them crucial in natural language processing, 

geophysics, and disaster prediction. 

b. Object Detection & Image Segmentation for Ripeness 

Object detection and image segmentation are central in precision agriculture, especially for 

computerized fruit harvest, ripeness grade, and quality inspection. Top deep learning networks like 

YOLOv8, Faster RCNN, and Mask R-CNN have all greatly improved on precision, recall, and the 

speed of real-time inference and are therefore are crucial in applications of smart farming. Such 

models enable automated determination of stages of fruit maturity, to streamline harvesting 

schedules, and enhance farm productivity. 

i. Faster R-CNN, YOLOv8, and Mask R-CNN for Instance Segmentation 

Instance segmentation is essential to accurately identify individual fruits and tree structures to 

enable robotic harvesting and precision pruning. YOLOv8 and Mask R-CNN were compared in a 

study on two orchard datasets. The first dataset, taken during the winter season, consisted of images 

of apple tree branches and trunks, while the second dataset, taken during the early growing season, 

included apple tree canopies with immature green fruit (fruitlets). The results indicated that 

YOLOv8 performed much better than Mask R-CNN. For the first dataset, YOLOv8 had 0.90 

precision and 0.95 recall, as opposed to 0.81 for both measures by Mask R-CNN. In the second 

dataset, YOLOv8 had 0.93 precision and 0.97 recall, better than Mask R-CNN's 0.85 precision and 

0.88 recall. Furthermore, YOLOv8 showed quicker inference times—10.9 ms for multi-class 

segmentation and 7.8 ms for single-class segmentation, whereas 15.6 ms and 12.8 ms are achieved 

by Mask R-CNN, respectively. The results in Figure 4 indicate that YOLOv8 is more appropriate 

for real-time orchard operation, especially robotic harvesting and thinning of fruit [42]. 
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Fig 4: Performance Comparison Between YOLOv8 and Mask R-CNN 

ii. Deep Learning for Automated Fruit Identification 

Fruit recognition is critical in international agriculture and food processing but is time-consuming 

and susceptible to human error with traditional manual categorization. Automation with deep 

learning enhances sorting, grading, and quality inspection. Faster R-CNN and YOLOv8 were 

tested for recognizing five fruit species: Apple, Cashew Apple, Banana, Mango, and Orange, and 

results are shown in Figure 5. Although both models had high classification accuracy, Faster R-

CNN had greater Mean Average Precision (mAP), while YOLOv8 performed better in real-time 

processing and recorded higher precision for individual fruits, particularly Cashew Apple and 

Banana. The results identify that Faster R-CNN is best suited for high-accuracy classification, 

whereas YOLOv8 is more suitable for real-time sorting purposes in food processing sectors [43]. 
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Fig 5: Comparison of Faster R-CNN vs. YOLOv8 Accuracy in Fruit Identification 

iii. Ripeness Detection in Tomatoes Using YOLOv8+ 

Tomato maturity grading is necessary for selective picking, when only perfectly ripe fruits are 

picked while immature ones are left to continue developing. Yet, variations in lighting and leaf 

occlusion make precise detection troublesome. To address this, a better YOLOv8+ model was 

built, with the addition of RCA-CBAM (Region & Color Attention) and BiFPN (Bidirectional 

Feature Pyramid Network) for improved feature extraction, as depicted in Figure 6. The research 

indicated in Figure 7 that YOLOv8+ performed better than the baseline YOLOv8, with 95.8% 

precision and 91.7% accuracy. In addition, incorporating the Inner-FocalerIoU loss function 

enhanced class balance and decreased incorrect classifications. The results confirm that YOLOv8+ 

is very effective for real-time tomato ripeness classification and therefore suitable for automatic 

harvesting purposes [44]. 
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Fig 6. Ripeness Detection in Tomatoes Using YOLOv8 
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Fig 7: Ripeness Detection Accuracy of YOLOv8 vs. YOLOv8+ 

iv. Advanced Segmentation Methods for Ripeness Classification and Autonomous Harvesting 

In contemporary farming, object segmentation methods are essential in autonomous ripeness 

classification, fruit counting, defect detection, and selective harvesting. Instance segmentation can 

be applied to identify single fruit instances, while semantic segmentation classifies image areas in 

terms of ripeness categories. New developments in deep learning architectures such as Mask R-

CNN, UNet, CNN-Transformers, and OccluInst have substantially enhanced accuracy in actual 

orchard automation and food processing. A comparative study of segmentation models on various 

agricultural applications indicates the merits and demerits of various approaches. Research has 

shown that one-stage segmentation models can be superior to Mask R-CNN, which is 

conventional, with higher accuracy and improved boundary predictions [45]. Likewise, AI-based 

fruit counting based on highly annotated datasets (e.g., RipSetCocoaCNCH12) has enhanced yield 

estimation, fertilization planning, and harvesting timetables [46]. Also, hybrid Transformer-CNN 

models are becoming powerful tools in robotic harvesting under occlusion-dominant situations 

[48]. 

Table 3 Comparative Analysis of Advanced Segmentation Models for Agriculture 

Applicati

on 

Dataset Model 

Used 

Key 

Features 

Performance 

(Accuracy/AP/

mAP50) 

Infere

nce 

Speed 

(FPS/

ms) 

Best 

Use 

Case 

Refere

nce 
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Peach 

Ripeness 

Classifica

tion 

NinePeach 

Dataset 

Mask R-

CNN vs. 

One-

Stage 

Segment

ation 

Handles 

lighting 

variatio

ns, 

occlusio

ns, and 

multiple 

fruit 

adhesio

ns 

Mask R-CNN: 

69.91% AP  

One-Stage: 

72.12% AP 

- Orchard 

automat

ion & 

selectiv

e 

harvesti

ng 

[45] 

AI-

Driven 

Fruit 

Counting 

& 

Ripeness 

Detection 

RipSetCocoaC

NCH12 

(Cocoa Pods) 

Instance 

& 

Semanti

c 

Segment

ation 

4,116 

images 

labeled 

across 

four 

ripeness 

stages 

Improves fruit 

counting 

accuracy for 

yield 

estimation 

- Harvest 

scheduli

ng & 

yield 

forecast

ing 

[46] 

Quality 

Assessme

nt in the 

Food 

Industry 

Rotten vs. 

Fresh Apple 

Dataset 

UNet vs. 

Enhance

d UNet 

(En-

UNet) 

Semanti

c 

segment

ation of 

peel 

defects 

UNet: 95.36% 

accuracy  

En-UNet: 

97.54% 

accuracy, 0.866 

IoU  

- Automa

ted fruit 

sorting 

in food 

processi

ng 

[47] 

Selective 

Harvestin

g with 

Robotic 

Systems 

Broccoli 

Harvesting 

Dataset 

CNN-

Transfor

mer 

(OccluIn

st) vs. 

Mask R-

CNN 

RGB-

depth 

fusion, 

occlusio

n 

handling 

OccluInst: 

86.2% mAP50, 

83.5% mAR  

51.4 

FPS 

Autono

mous 

harvesti

ng 

robots 

under 

occlusio

n 

[48] 

 

The integration of deep learning-based segmentation models is revolutionizing precision 

agriculture as shown  in Table 3. While Mask R-CNN remains effective, newer one-stage 

segmentation models, CNN-Transformers, and enhanced UNet architectures provide better 
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efficiency, speed, and accuracy in fruit detection, defect analysis, and automated harvesting. Future 

advancements should focus on improving dataset annotations, optimizing real-time inference on 

edge AI devices, and deploying these models in large-scale farming operations. By leveraging AI-

driven segmentation models, the agricultural sector can enhance yield predictions, reduce food 

waste, and optimize selective harvesting operations, ensuring sustainable and profitable farming 

practices. 

6. MULTI-MODAL AI FOR RIPENESS CLASSIFICATION AND MONITORING 

The fusion of several sensing modalities has greatly improved fruit ripeness classification, quality 

evaluation, and crop monitoring. Conventional RGB-based fruit classification techniques are 

frequently hampered by lighting condition changes, occlusions, and environmental noise. In order 

to mitigate these limitations, scientists have established multi-modal AI methods that combine 

thermal, hyperspectral, depth, and sensor-based information to enhance classification performance 

and stability. Cross-modal learning methods have also been used for plant health monitoring, 

preharvest yield prediction, and food safety uses. Figure 8, depicts an AI-based framework for fruit 

ripeness classification, sorting, quality monitoring, and post-harvest storage optimization. It 

combines multi-modal data sources, deep learning models, and classification methods to improve 

agricultural automation. Data collection is the beginning, with RGB, Thermal, Hyperspectral, and 

UAV imaging collecting visual data, sensor data in temperature, humidity, and gas levels offering 

real-time observations. Preprocessing methods like noise removal and image restoration smooth 

out the data prior to analysis. Cross-modal fusion combines several data sources, making it more 

accurate. 
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Fig.8. Multi-Modal AI Workflow for Ripeness Classification and Post-Harvest 

Optimization 

During processing, CNN models (ResNet, VGG16, InceptionV3) extract fruit features, while 

segmentation techniques (Mask R-CNN, UNet, OccluInst) identify boundaries and levels of 

ripeness. Deep learning classifiers examine the extracted features to classify ripeness, quality, and 

storage requirements. The last stage comprises real-world applications, such as ripeness detection 

and classification, automated sorting and grading, yield estimation and harvest forecasting, food 

quality and safety inspection, and post-harvest storage optimization. With sensor fusion, deep 

learning, and image segmentation integration, the multi-modal AI system improves efficiency, 

minimizes postharvest loss, and supports improved decision-making in agriculture. 

a. Fusing RGB, Thermal, Hyperspectral, and Sensor Data 

The quality of fruit is a significant aspect affecting consumer acceptance and market value. 

Research examined the application of thermal imaging and deep learning models to distinguish 

between various pineapple types on the basis of physicochemical changes [49]. The study 

employed a multi-modal data fusion approach merging thermal imaging with deep learning 

structures like ResNet, VGG16, and InceptionV3. The outcomes proved that thermal imaging 

fusion characteristics with CNN-based models substantially enhanced classification accuracy with 

a high accuracy rate of 0.9687. This highlights the role of thermal imaging in real-time monitoring 

of fruit quality. A systematic review further compared machine vision systems and AI algorithms 

for autonomous detection and harvesting of fruits [51]. The review contrasted different 3D imaging 

modalities, vision sensors, and AI-based fruit detection strategies, emphasizing the need for multi-

modal sensor fusion for improved fruit classification and ripeness tracking. The research 

determined that the use of multiple imaging modalities (e.g., RGB, hyperspectral, and LiDAR) 

enhances detection accuracy, minimizes false positives, and maximizes automated harvesting 

efficiency. A bibliometric review of fruit sorting and grading research also validated these results 

by examining 129 machine vision studies published between 2011 and 2023 [52]. The research 

found a high growth rate of deep learning models for fruit classification over the last five years, 

with pre-trained transfer learning models yielding the best accuracy. Research directions in the 

future focus on the use of multiple sensors, enhanced system robustness, and the creation of 

standardized evaluation metrics for fruit classification models. 

b. Cross-Modal Learning in Fruit and Crop Monitoring 

As climate change and resource scarcity pose challenges to agricultural sustainability, integrating 

artificial intelligence (AI) with multi-modal data sources is becoming crucial for crop health 

monitoring, plant stress detection, and preharvest yield estimation. A study introduced PA-

RDFKNet (Plant Age RGB-Depth Fusion Knowledge Distillation Network) for cross-modal 

learning in plant growth monitoring [53]. The proposed model fused RGB and depth images during 
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training, but relied solely on RGB images for inference, making it accessible for farmers lacking 

depth cameras. The approach significantly reduced mean squared error in plant age prediction from 

2 weeks to 0.14 weeks, demonstrating high potential for real-time crop growth monitoring. 

Unmanned Aerial Vehicles (UAVs) have also emerged as key tools for preharvest crop yield 

estimation. A systematic review of UAV-based yield estimation research analyzed 76 studies on 

wheat, corn, rice, and soybeans [54]. The findings revealed that machine learning models trained 

on UAV-collected remote sensing data delivered highly accurate yield predictions. The study 

emphasized the importance of feature selection, multi-modal fusion (multispectral + thermal 

imaging), and deep learning models (CNNs and Random Forests) for optimal results. Future 

research should focus on data augmentation, feature engineering, and real-time UAV-based yield 

estimation. 

c. AI for Food Monitoring and Safety 

Food monitoring is an essential practice for nutrient tracking, dietary management, and personal 

health monitoring. AI-based food recognition systems have been developed to analyze food 

composition and quality based on smartphone images. However, existing tools suffer from low 

accuracy and limited contextual understanding. A new study proposed an optimized food 

recognition model, leveraging machine learning, natural language processing (NLP), and 

contextual ingredient data from online recipes [55]. The system, named FoodInsight, demonstrated 

improved ingredient recognition accuracy and was successfully integrated into an Android-based 

food tracking app. The study suggests that combining food image recognition with AI-driven 

nutrient databases can significantly improve dietary monitoring applications, opening new 

opportunities for automated food safety checks and personalized nutrition planning. 

7. SELF-SUPERVISED & FEW-SHOT LEARNING IN RIPENESS CLASSIFICATION 

a. Training Models with Limited Labeled Data 

Few-shot image classification is designed to classify unseen categories using only a limited 

number of labeled samples. Traditional deep learning models struggle with generalization under 

such constraints. Recent advancements leverage meta-learning and self-supervised learning (SSL) 

to improve the adaptability of models. One study proposed an SSL-based embedding network to 

enhance feature learning, outperforming baseline models in MiniImageNet and CUB datasets. 

Further evaluation across four cross-domain few-shot learning datasets demonstrated state-of-the-

art results [56]. Another approach, SSL-ProtoNet, integrates self-supervised learning, Prototypical 

Networks, and knowledge distillation to enhance few-shot learning performance. The method 

consists of three key stages: pre-training, fine-tuning, and self-distillation, significantly reducing 

overfitting. Experimental results on miniImageNet, tieredImageNet, and CIFAR-FS confirmed the 

superiority of SSL-ProtoNet over conventional few-shot learning approaches [57]. In remote 
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sensing applications, scene classification remains a challenge due to insufficient labeled data and 

the complexity of overlapping objects. A self-supervised learning framework (RS-FewShotSSL) 

was proposed to address these issues using contrastive learning and EfficientNet-B3 for feature 

extraction. By leveraging large amounts of unlabeled remote sensing images, the model 

demonstrated superior classification performance on three public remote sensing datasets, 

outperforming standard approaches such as SimCLR, MoCo, BYOL, and IDSSL [58]. 

b. Synthetic Data Generation and Augmentation 

Self-supervised learning (SSL) has gained significant attention in natural language processing and 

image classification, particularly for handling small datasets. A novel composite rotation-based 

auxiliary task was developed to enhance representation learning, enabling deep learning models to 

extract generalized and discriminative features from few labeled samples. The suggested method 

exhibited state-of-the-art performance on various benchmarks [59]. In wireless network security, 

FS-SEI based on Radio Frequency Fingerprinting (RFF) is challenging because labeled samples 

are limited. A new self-supervised and adversarial augmentation (SA2SEI) method was proposed 

to enhance feature learning and model robustness. Experiments on ADS-B and Wi-Fi datasets 

indicated that SA2SEI greatly improves classification accuracy, even with just five samples per 

device [60]. Lastly, Few-Shot Class Incremental Learning (FSCIL) also poses further challenges 

because of overfitting and catastrophic forgetting. Scholars proposed a feature fusion-based self-

supervised learning method, which fused representations from supervised and self-supervised 

models. The approach outperformed the current classifiers on CUB200, miniImageNet, and 

CIFAR100 benchmarks, pushing the state-of-the-art in FSCIL research [60]. The improvements 

in self-supervised learning and few-shot learning have revolutionized AI-based classification 

models to make them more efficient, flexible, and generalizable in situations with sparse labeled 

data. Through the use of meta-learning, contrastive learning, and data augmentation, scientists 

have improved model robustness across a wide range of domains, such as remote sensing, 

agriculture, security, and incremental learning. These methods provide promising avenues for real-

world AI deployment, especially in automated fruit ripeness classification and quality evaluation. 

8. CONCLUSION 

This study has undertaken a detailed review of the current advances in AI-based fruit ripeness 

detection, focusing on deep learning-based classification, object detection, segmentation, and 

multi-modal fusion methods. The results underscore the revolutionary potential of AI in precision 

agriculture to accurately and efficiently predict ripeness while minimizing the reliance on human 

inspection. CNNs, transformers, and hybrid models have shown high classification efficiency with 

models such as YOLOv8 performing better than conventional segmentation techniques in real-

time scenarios. Furthermore, multi-modal techniques combining hyperspectral, thermal, and 

sensor-based data have also enhanced classification resilience. Nevertheless, some challenges still 
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persist. The access to high-quality, varied datasets for AI training remains a bottleneck, calling for 

the creation of standardized, annotated databases for various fruit types and ripeness levels. Real-

time inference and deployment on resource-limited devices still pose technical hurdles, calling for 

research into lightweight deep learning algorithms and edge computing. Additionally, 

explainability and interpretability of AI outcomes in agricultural uses have to be improved to 

facilitate higher farmer uptake and regulatory acceptance. Future research has to target improved 

scalability of AI-based ripeness detection by fusing IoT-based smart agriculture solutions, building 

more resilient models that generalize well under varied environmental settings, and enhancing AI 

explainability for improved trust and useability. Through tackling these issues, AI-based ripeness 

detection systems can transform farming practices, enhancing food quality, minimizing waste, and 

optimizing supply chain Efficiency 
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