
www.ijiemr.org Volume number:01, Issue number:02 Page 16

PACKET CLASSIFICATION WITH LOW MEMORY

CONSUMPTION

*K.BRAHMA CHARY **B.SARITHA

*M.TECH student , Dept of CSE, VAAGDEVI COLLEGE OF ENGINEERING

**Assistant Professor, Dept of CSE , VAAGDEVI COLLEGE OF ENGINEERING

ABSTRACT

FPGA technology has become widely used for real-time network intrusion detection. In this

paper, a novel packet classification architecture called BV-TCAM is presented, which is

implemented for an FPGA-based Network Intrusion Detection System (NIDS). The classifier can

report multiple matches at gigabit per second network link rates. The BVTCAM architecture

combines the Ternary Content Addressable Memory (TCAM) and the Bit Vector (BV) algorithm

to effectively compress the data representations and boost throughput. A tree-bitmap

implementation of the BV algorithm is used for source and destination port lookup while a

TCAM performs the lookup of the other header fields, which can be represented as a prefix or

exact value. The architecture eliminates the requirement for prefix expansion of port ranges.

With the aid of a small embedded TCAM, packet classification can be implemented in a

relatively small part of the available logic of an FPGA. The design is prototyped and evaluated in

a Xilinx FPGA XCV2000E on the FPX platform. Even with the most difficult set of rules and

packet inputs, the circuit is fast enough to sustain OC48 traffic throughput. Using larger and

faster FPGAs, the system can work at speeds greater than OC192. Categories and Subject

Descriptors C.3 [Computer Systems Organization]: Special Purpose and Application-based

Systems General Terms Algorithms, Design, Security Keywords Reconfigurable Hardware,

FPGA, Packet Classification, NIDS, TCAM, BV, Tree Bitmap ∗This work was funded by a

grant from Global Velocity. without fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this notice and the full citation on the first

page.

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 17

INTRODUCTION

Network intrusion detection systems that

protect high speed computer networks

demand both high throughput and flexibility

to handle new threats. Such systems classify

Internet packets based on both the header

fields and the strings in the packet content or

traffic flow. FPGA technology is desirable

since it offers both high performance and the

ability to reconfigure. Packet header

classification is an integrated part of a

fullfeatured NIDS. Rules in an intrusion

detection database usually contain 5-tuple

header filters (i.e. Source IP Address,

Destination IP Address, Protocol, Source

Port and Destination Port) plus some strings

(also known as “signature”). In a full-

featured NIDS rule database, signatures can

have variable lengths and be located at any

offset in the packet. Packet header fields,

however, are constant in length and appear

at fixed location in the packet. Though in

high level we can see content string

matching is another dimension of

classification problem, existing packet

classification algorithms are not easy to be

extended to handle the string matching. Due

to the different nature of strings and packet

header fields, it is desirable to separate the

header classification process from the string

matching process. A cross-product of the

two results can be used to determine a

complete rule match. A signature, however,

might indicate a potential attack only in a

specific context defined by the header fields.

Matching the signatures independently of

the header can greatly reduce the system’s

performance. In fact, if the performance of

the cross-product is poor, attackers may

overload the system by injecting worst-case

traffic. The system can be vulnerable to a

Denial of Service (DoS) attack or fails to

catch the sneak attacks. For this reason,

some software based NIDS match the header

filters first then scan the content in the

context. But the performance of these

systems is generally poor due to the lack of

the parallelism and inefficient data structure.

Snort is a popular open source NIDS which

uses signatures to detect malicious activities

over the Internet [12, 1]. Unfortunately, this

software based system cannot keep up with

high speed networks. The system drops

packets when the input traffic load exceeds

the processing power of the CPU, on which

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 18

the software runs. Within Snort, the

incoming packet header compares against

the header filters sequentially and then the

packet payload compares against the

signatures in the context sequentially. On

the other hand, in hardware, packet header

classification and content scanning can be

performed in parallel, which improves the

overall system throughput. More efficient

and hardware-oriented data structures can be

used to accelerate the processing of each

part. For packet classification, some

algorithms achieve high performance at the

cost of high system complexity, high

resource usage, or high power consumption.

Some algorithms are very efficient in terms

of resource usage but with poor processing

throughput. Some algorithms are only

suitable for the software implementations.

Analysis of the characteristics of the NIDS

database reveals ways to best exploit

hardware parallelism and efficiently utilize

the FPGA core components. Snort is a

popular open source NIDS which uses

signatures to detect malicious activities over

the Internet [12, 1]. Unfortunately, this

software based system cannot keep up with

high speed networks. The system drops

packets when the input traffic load exceeds

the processing power of the CPU, on which

the software runs. One of the well-known

signature-based rule sets is provided with

Snort. Snort rules are contributed by the

network security community. Most of the

recently found network exploits can be

extracted by experts as new signatures and

be added to the Snort rule set promptly. The

database of signatures has become very

large and keeps growing. However, among

the thousands of the Snort rules, there are

only about 200 distinct header rules1 . This

reveals that the number of distinct header

rules in NIDS is typically small comparing

to the number of rules in a core router

database. This occurs since NIDS are

usually deployed at the edge of an enterprise

network and used to protect the internal

network form outside world. Though the

size of header rule set is moderate, it is still

prohibitive for a linear search. One more

subtle point is that header classification for a

NIDS needs to provide all the matches

rather than just the highest priority one,

because any header match may lead to a

complete rule match. So we cannot apply

priority-based algorithms that terminate

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 19

without giving a thorough list of matching

rules. In this work, we detail the design of a

packet classification architecture named BV-

TCAM for network security applications in

FPGA hardware. BV-TCAM uses a small

embedded TCAM with programmable logic

and block RAMs in a Xilinx FPGA. We

show that it should be possible to port this

design into a newer and larger FPGA for a

full functional NIDS and work at over

OC192 throughput. The rest of the paper is

organized as follows. Section 2 states the

problem we intend to solve and set it in

context. Section 3 reviews some related

works that motivated our design. Section 4

describes our design in detail and Section 5

prototypes the design and evaluate its

performance. Lastly Section 6 summarizes

our contributions and concludes the work.

2. PROBLEM STATEMENT

The formal statement of the general packet

classification problem is: There are k

relevant packet header fields H1, H2, ..., Hk,

where each field is a bit string and allows

one of 1The Snort rules are represented in an

abstract and compact way, so one such

header rule may represent several rules in an

implementation. But the total number of

distinct header rules is still small and much

less than the number of content rules three

kinds of matches: exact match, prefix match

or range match. The header rule set contains

a sequence of N rules R1, R2, ... RN . Each

rule is a combination of k header fields. A

rule is said to match a packet if each field in

the rule matches the corresponding field in

the packet header in the specified way. In

many of the packet classification

applications, an action occurs on the

matched packet. For example, in a network

router, the matching guides the forwarding

decision. In a network firewall, packets are

filtered or logged when a match is detected.

But in network intrusion detection, a header

match is not enough to identify a malicious

packets. Further inspection needs to be

conducted. An example rule from Snort

database is shown below: alert tcp $EXT

NET any → $HOME NET 53 (msg:“DNS

named version attempt”; flow:to

server,established; content:“|07|version”;

offset:12; nocase;) If the content signatures

appears at specified location in any

established TCP flow which is from outside

network to any host’s port 53 in local

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 20

network, an alert message will be sent to the

administrator. We can separate this rule to a

header part and a content part. We represent

this header rule as a 5-tuple string {Source

IP Address = any, Destination IP Address =

internal network prefix, Protocol = TCP,

Source Port = any, Destination Port = 53}. It

turns out that many rules may share a

common Snort header rule. We classify the

packet based on the header first, then use

this information to guide further inspections

of the packet content.

3. RELATED WORK

Using FPGA for network intrusion detection

has become a hot topic in recent FPGA

research [7, 5, 13, 6, 4, 3]. One compute-

intensive task in NIDS is pattern matching.

Most of the related work focused on the

efficient pattern matching problem.

However, packet header classification is

another integral part of a full-featured NIDS.

Many algorithmic and architectural

approaches have been proposed to classify

packets. The software solutions are weak in

terms of performance while the hardware

solutions are overly complicated or costly to

implement. It is still an open and

challenging problem to find practical

solutions. A good review of packet

classification algorithms and architectures

can be found in [16]. Here we focus on a

particular method well suited for an FPGA

implementation. Ternary Content

Addressable Memory (TCAM) is currently

the most popular method for packet

classification in practice. TCAM has the

ability to store a “don’t care” state in

addition to a binary bit value. Input keys are

compared with every TCAM entry in

parallel. Given N distinct rules in a rule set,

it only needs the O(N) storage and performs

in O(1) lookup time. But there are issues

related to the TCAM solution. TCAMs have

low density and high power consumption.

TCAMs also do not support direct range

representation. In the header rules, the

source port and destination port fields are

usually defined as ranges. Although a range

can be converted into a series of prefixes,

this processing can greatly expand the rule

set size. For example, in the worst case, a

sub-range of a k bit field can be converted

into 2(k − 1) prefixes. The number of

expansions is multiplied to be up to 4(k −

1)2 when two port ranges are defined in the

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 21

header fields. This means in the worst case a

single rule may expand to 900 TCAM

entries. Analysis on Washington

University’s CTS firewall rule set shows

even a small set of 150 header rules

explodes to 17000 different rules after the

ports are transformed from range to prefixes.

So direct use of a TCAM in this way is very

inefficient. There has been research on

methods to match ranges more efficiently

with TCAMs. Spitznagel et al. proposed a

novel TCAM architecture called Extended

TCAM (ETCAM) which supports direct

range lookup [14]. A special logic circuit

that performs the range check is appended

after the normal TCAM cells. By only

doubling the overall number of CMOS logic

cells, it maintains the rule database in its

original size. A scheme proposed by Liu

introduced a range mapping method for

TCAM without expanding the rule set size

[10]. Given the fact that the number of

distinct port ranges is limited even in a large

database, a bit vector is created for each

range field. Each distinct range is assigned a

bit position in the bit vector. So in a TCAM

entry, besides the normal {value, mask} pair

for IP addresses and protocol fields, two bit

vectors present with the corresponding range

bit set to 1 and all other bits set to “don’t

care”. A lookup key translation table is also

created for each port field. The table index is

the port value; each entry in this table is a bit

vector. The bit is set to 1 only if the port

value is within the corresponding range. To

perform a header classification, the packet

ports values are used to lookup the key

translation tables, then the outputs are

attached to the other 3 fields to form the

lookup key to TCAM. Though this scheme

doesn’t expand the number of TCAM

entries, it does have cost: the number of bits

for each entry is expanded proportionally to

the number of distinct port ranges, which is

not scalable. Secondly, this scheme needs

two large translation tables with a size of

64K × (#of distinctranges). This is so large

that it will not fit in the embedded block

RAMs available in most FPGA devices and

it could not even be able to be implemented

in off-chip SRAMs. Yu et al. proposed

another TCAM-based solution for intrusion

detection [20]. They address the multi-match

packet classification by preprocessing the

header rule set to effi- ciently use the TCAM

capacity: Firstly, they extend the rule set and

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 22

add a corresponding memory. The TCAM

uses the first match entry to retrieve all

matches. Secondly, a method is shown to

remove the negations without signifi- cantly

expanding the rule set. Both steps only

moderately expand the size of the rule set in

practice but it cannot guarantee the worst

case scalability. The Parallel Packet

Classification (P 2C) by Lunteren et al. [11]

is also a TCAM-based algorithm. Each field

of the header is encoded to less bits through

preprocessing. For each header rule, code

words of all fields are concatenated to form

a TCAM entry. Though the total number of

TCAM entries still equals the number of

header rules, each entry needs much less bits

than original header rule. This scheme is

impressive for a large scale rule set,

however, to assemble the TCAM lookup

key, each header field must perform a single

field search first to retrieve a code. The

proposed solution also needs the port range

expansion and performs tree based lookups.

This tends to lower the system throughput.

Another practical packet classification

algorithm often referred as Lucent Bit

Vector (BV) was initially proposed by

Lakshman et al. [8]. The BV scheme is

targeted for hardware implementation. It

decomposes the multiple header fields

matching problem into several instances of

single field matching problem. The idea is to

search for rules that match each field of the

packet header and represent the results as a

set of bit vectors. Each rule is represented as

one bit in every bit vector. If a header field

matches the same field of a rule, the

corresponding vector bit is set to 1 otherwise

it remains 0. After all bit vectors are

acquired, the rules that match the header can

be obtained by intersecting the bit vectors.

This scheme is simple in that it only use

memory access and logic AND operation. If

a binary search is used for each field, this

scheme has an O(logN) search time where N

is the number of rules in the rule set but it

needs O(N 2) memory, which is large in

practice. The authors implemented BV in an

FPGA operating at 33 MHz and five 128

Kbyte Synchronous SRAM chips. The

configuration supports up to 512 rules and

processing 1 million packets per second in

the worst case. In the original BV algorithm,

in the case where the number of rules is

large, the bit vector is wider than the

memory data bus causing a bit vector

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 23

retrieval to require several sequential

memory accesses. Baboescu et al. enhanced

the BV idea and proposed an improved

algorithm called Aggregated Bit Vector

(ABV) [2]. They built a bit vector using the

longest prefix search tree. Each bit vector is

partitioned into k blocks. The natural block

size is the largest number of bits that one

memory access can fetch. An aggregate bit

vector summarizes the bit vector which is

stored along with the normal bit vector. If

there is any 1 in a block, the corresponding

bit in aggregate bit vector is set to 1;

otherwise it remains 0. Upon lookups, the

aggregate bit vectors for all the checked

fields are ANDed first to get the

intersection. Based on this smaller bit

vector, only those blocks that contain any

potential match are checked further.

Preprocessing is needed to reorder the rules

so that the 1s are denser in the bit vector,

therefore the aggregate bit vector is more

useful to reduce the number of memory

access. The BV and ABV algorithms are

hardware-based. The bit vector lookups for

different header fields can execute in

parallel. For the 5-tuple header search, 5

groups of independent accessible memories

are used. However, the searching time over

each tuple is unbalanced: there are 32 bits in

an IP address but only 16 bits in a protocol

port. The prefix lookup for IP is 2 times

slower in average than the lookup for port

and thus affects the overall performance

negatively. The design described in this

paper handles this problem by using a

hybrid architecture.

4. BV-TCAM ARCHITECTURE

Our design combines and optimizes the

TCAM and Bit Vector algorithms for packet

header classification in NIDS. As mentioned

earlier, network intrusion detection systems

require header classification to report all

matches, not just one. In usual applications,

TCAM is associated with a priority encoder

than only reports the ID of the matched

entry with the highest priority. In this

application, we prefer an un-encoded

TCAM. That is, the number of output bits

equals the number of TCAM entries and

each bit indicates the matching status of the

corresponding TCAM entry. Just like the

BV output, the Un-encoded TCAM output

forms another bit vector and each bit in the

vector indicates the match to the

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 24

corresponding rule field(s) or not. So the

idea

is that the header ¯ elds are partitioned in a

way that some of them are classi¯ ed using

TCAM while the others are clas- si¯ ed

using Bit Vector algorithms. Particularly, we

exclude source and destination port ¯ elds

from TCAM while keeping IP address and

protocol ¯ elds in TCAM. We order the rules

in same sequence, hence we can intersect all

the output bit vectors to get the set of

matches. This method optimizes the size of

the TCAM, as it does not expand the

number of TCAM entries.

TCAM could be programmed using the

three ¯ elds of an IP packet directly, but we

do better by further savings of the expensive

TCAM entries. We observe that several

di®erent header rules usually share the same

address and protocol ¯ elds, so we can

compress these rules into a single TCAM

entry. A similar idea is used in [9] to

optimize the hardware implementation of an

irregular TCAM architecture. Extra logic is

needed to decompress or map the TCAM

output bit vector to a full size bit vector. In

order to realize this idea, we sort the header

rule set to group those rules together

that share the identical address and protocol

¯ elds, and then label each rule with a global

identi¯ er in order. We only program the

distinct ¯ rst three ¯ elds into the TCAM.

Each output bit of the TCAM is used to set

or reset a group of D type registers. In this

way, a full size bit vector is formed in which

each bit corresponds to a header rule.

To better illustrate our design, a small set of

example header rules is shown in Table 1.

Note that the rules are al- ready sorted as

described above. The corresponding circuit

that performs TCAM related partial

classi¯ cation is shown in Figure 1. Though

this scheme is the fastest, it does not support

incremental updates. Because of the fact that

the header rule database update is much

more infrequent than the actual lookup, the

¯ eld-reprogrammable capability of the

FPGA is utilized. Whenever a new update is

needed, a new bit ¯ le can be generated then

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 25

recon¯ gured into the FPGA. Faster

incremental updates can be supported by at-

taching a memory entry to each TCAM

output which en- codes the partial

decompressed vector. Since typically a

packet may match a few TCAM entries,

several memory ac- cesses are needed to

retrieve and decode the memory word to

build a full bit vector. In our design we use

the ¯ rst method for simplicity and fast

prototype. We adopt the bit vector

algorithms as described in ABV algorithm

for port classi¯ cation. Speci¯ cally, we build

the port pre¯ x lookup tree for bit vector

searching. Since we can build a very wide

memory data bus using on-chip Block

RAM, we do not need to use the aggregated

bit vector for this scale of problem2. To

build the binary port pre¯ x 2There are only a

few hundred distinct header rules in Snort

database. If the entire bit vector can be read

in one memory access, there is no need to

aggregate the bit vector. This can both

improve the performance and eliminate the

reprocess-

lookup tree, each port's ranges are ¯ rst

transformed into a series of pre¯ xes. All

pre¯ xes are then inserted into a binary

decision tree. The branch decision at each

level is decided by the bit pattern in the

pre¯ x. Each valid pre¯ x node has a bit

vector created. The bit vector indicates all

the rules with its port de¯ nition matching to

this pre¯ x. The lookup procedure becomes a

longest pre¯ x matching problem for the

packet port. Upon receiving a port value

from a packet header for classi¯ cation, The

search is conducted by travers- ing the tree

using the bits of the address, starting with

the most signi¯ cant bit. The search

terminates when the bits are exhausted or a

leaf of the tree is reached. The bit vec- tor

stored at the matched longest pre¯ x node is

retrieved. After we get all three bit vectors

from the TCAM and the two longest pre¯ x

lookup trees, the set of matches can be

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 26

determined by simply intersecting these bit

vectors.

Here we still transform ranges to pre¯ xes,

however, we use them to build decision trees

rather than a brute force TCAM

programming. A decision tree uses cheap

memo- ries to store the data structure instead

of expensive TCAM entries. The size of the

decision tree is not as sensitive to the

number of pre¯ xes as the TCAM, because

the size of TCAM increases linearly with the

number of pre¯ xes. In decision tree,

additional pre¯ xes may not change the size

of the data structure at all if the pre¯ xes can

be mapped on existing tree nodes. Another

important feature of decision tree is that the

worst-case search time does not depend on

the number of pre¯ xes in set, but only

depends on the depth of the tree.

Optimizations are possible to search for the

longest pre¯ x match. In order to speed up

the lookup process, multi-bit trie schemes

were developed which perform a search

using multiple bits of the lookup bit string at

a time. Controlled Pre¯ x Expansion and

Leaf Pushing are two important tech- niques

for fast multi-bit trie lookup introduced by

Srinivasan and Varghese [15]. These and

other similar techniques are optimized for

performance but have high memory

consump- ing e®ort. We will show this is

the case in our design tion. Unlike the IP

lookup problem, where each valid trie node

only stores the next hop IP information, our

scheme stores a much wider bit vector. With

limited resources, we desire a scheme which

consumes less memory and could ¯ t in an

FPGA. The Tree Bitmap introduced by

Eatherton and Dittia [18] works well for this

problem. This technique avoids pre¯ x

expansion and leaf pushing while using a

clever indexing scheme to dramatically

reduce the memory penalty associated with a

naive implementation. For each node in a

multi-bit trie, Tree Bitmap algorithm uses an

Extend-ing Paths Bitmap to represent the

subset of the potential children that are

actually present, and an Internal Pre¯ x

Bitmap to represent the pre¯ xes associated

with the given node. Children of a node are

stored in consecutive memory locations.

Similarly, the next hop information

associated with a node is stored in a group

of consecutive memory lo- cations. By

counting the number of 1's in the bitmaps,

the scheme allows the use of a single pointer

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 27

to reference the children and next hop

information. In our application, a bit vector

is stored instead of the next hop information.

The bit vector is much wider hence more

resource consuming than the next hop

information, but the total number of bit

vectors is small, so this not a serious

concern for our design.

Using the example shown in Table 1, we

transform the source port range to a series of

pre¯ xes as shown in Table 2. The

corresponding multi-bit trie using Tree

Bitmap is shown in Figure 2. The trie stride

is 4. Each black dot represents a valid pre¯ x

and is virtually associated with a bit vector.

The four valid pre¯ xes contained in the root

trie node are labeled in the Internal Pre¯ x

Bitmap and the four possible child branches

are labeled in the

Extending Paths Bitmap.

Besides these two Bitmap vectors, 2 pointers

are maintained pointing to the ¯ rst pre¯ x's

bit vector and the ¯ rst child node's address.

All other trie node are structured in similar

way. There is a slight di®erence in the

deepest level trie node where there are no

more extending paths present. Instead, each

so called \extending path" is already an

exact match. So the pointer for \extending

path" here actually points to a base address

where the bit vectors are stored. While

splitting tree technique is proposed in [17] to

deal with this issue, we apply this alternative

to keep the design simpler and lower the

resource consumption. For example, if a

packet with source port 2559 (09FF in

Hexadecimal) needs to be classi¯ ed, The

root node bitmaps are checked which

correspond to the ¯ rst nibble of the port,

\0000". So far the best match is *" and

meanwhile the extending paths bitmap

indicates a possible child. This best match is

latched and then the pointer is followed to

the child

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 28

node. In the child node, there is no further

possible child node for the second nibble

\1001" and the best match pre¯ x is \0000

1*** **** ****". The old best match is

°ushed and the new best match is the longest

pre¯ x match. The bit vector's address is

calculated by the base pointer and the bit

o®set in the internal pre¯ x bitmap. Finally,

the bit vector \101010" is retrieved, which

means the header rule 1, 3 and 5 are all

matched. Whenever it is impossible to

advance along the trie paths to ¯ nd a new

pre¯ x match, the stored best match pointer is

used to retrieved the bit vector.

5. IMPLEMENTATIONAND

EVALUATION

A full FPGA-based NIDS is under

development which will implement a full-

featured network intrusion detection system.

While our solution is general enough to

perform any kind of packet classi¯ cation, we

optimize our design to incor- porate the

Snort rule set. We show that only a small

amount of memory and logic is needed to

implement a circuit that achieves a fast

header classi¯ cation rate.

Speci¯ cally, we prototype the design in a

Xilinx XCV- 2000E FPGA. The block

diagram of the circuit is illustrated in Figure

3. Our packet header rule set is extracted

form Snort database V1.9.03. There are a

total of 222 unique header rules. Since the

NIDS is usually deployed on the edge of the

protected network and only monitors the

pass- through tra±c, we can logically change

the source IP ad- dress from the external

network to a wildcard \any" wher- ever the

peer IP address is in the internal network.

After this translation, the fSource IP,

Destination IP, Protocolg combinations are

successfully compressed to have only 33

distinct values. That means in the most

compact way, we just need a 33 £ 72bits

TCAM. This size of TCAM can be

implemented using an embedded core on the

FPGA without consuming too many

resources.

The brute force implementation of TCAM

using logic gates includes a set of registers

and logic to perform parallel bit- wise XOR

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 29

and NAND operations. A 2-entry TCAM

exam- ple is shown in Figure 4. In our

design, we use Xilinx Core Generator to

generate the TCAM component [19]. This

TCAM core is comprised of multiple blocks

of SRL16Es linked by carry-chains. The

TCAM has a single-clock la- 3The Snort

database is updated often and the latest

version, V2.2.0, has been released. But we

¯ nd that the size of the header rule set barely

change, especially for the 3 ¯ elds that a®ect

the TCAM. We believe our implementation

of the BV

algorithm can scale well to foreseeable Snort

updates.

tency on its read operation which is

desirable for our high speed processing. We

set the match address options to be\multiple-

match unencoded" so that the output is the

bit vector we need. The core uses 1188

SRL16Es which counts only 3% of the

available SRL16Es in XCV2000E. With a

larger FPGA like XC2V10 000, the resource

consumption for TCAM is as little as only

1%. This also implies that the TCAM scales

to a reasonable larger size of header rule

database. For the multi-bit trie, the worst

case memory consumption and lookup

e±ciency can be determined, given the stride

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 30

of S and the trie degree of k. The worst case

memory consumption happens when we

have a complete trie with depth l. We de¯ ne

N as the total number of trie nodes and b as

the total number of bits to store the node

data structure, except the memory for bit

vectors. Since we store the trie data struc-

ture in limited on-chip Block RAM, it is

critical to keep the size of the trie data-

structure as small as possible under the

throughput constraint. Each trie node

maintains an \Inter- nal Pre¯ x Bitmap" with

length (k ¡ 1) and an \Extending Paths

Bitmap" with length k. There are also 2

pointers and we assign 16 bits for each4. So

the size of one node is

4This means that we can support up to 64K

pre¯ xes and 64K trie nodes. This number of

pre¯ xes is more than enough for practical

network intrusion detection systems. For

example, in Snort's source port pre¯ x trie,

there are only 477 binary trie nodes in total

and less than 100 distinct pre¯ xes. The

larger the stride is, the less the memories are

needed and at same time less memory

accesses are needed to get the ¯ nal bit

vector. On the FPGA XCV2000E, there are

655,360 bits of Block RAM available. The

multi-bit tries with stride 4 and 8 both

satisfy the constraints. But the bitmap's

length increases exponentially as the stride

becomes larger, this in turn lowers the speed

to calculate the addresses of bit vector or

next trie node. For a real database with a

smaller stride, the bitmaps is signi¯ cantly

sparser, so the real number of trie nodes is

actually far less than the worst case

estimation.

In terms of the memory e±ciency, a smaller

stride is more favorable. As a tradeo®, we

choose stride size 4 in our design. So in

worst case, at most 4 steps walking in the

trie are needed to obtain the bit vector.

Parsing the Snort header rules, we get 87

distinct pre¯ xes for source port and 177 for

destination port. We have 222 rules in total

that means each bit vector is 222 bits long.

So the total memories required to store the

bit vectors are only 58,608 bits (i.e. 9% of

the total available bits in XCV2000E).

This is small enough to be hold in on-chip

block RAM. In Table 4, we give the total

memory usage for the source port pre¯ x trie

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 31

under di®erent strides, including the bit

vectors.

Clearly, at stride 4, we achieve the optimal

memory e±- ciency as well as a relatively

fast lookup speed. In the worst case, at most

5 memory accesses are needed to retrieve a

bit vector (i.e. 4 accesses to traverse the trie

and 1 access to retrieve the bit vector).

Destination port pre¯ x trie hold the similar

results. We assumes that in the

implementation, each trie node uses a 64-

bits word, each bit vector uses a 256-bits

word and both can be read in one clock

cycle by using fast on-chip Block RAMs.

An FPGA-based Tree Bitmap algorithm has

been implemented at Washington University

[17]. This circuit is called the Fast Internet

Protocol Lookup (FIPL) search engine.

Multiple FIPL engines can work together to

improve the system throughput. We directly

borrow this implementation and modify it to

¯ t the BV algorithm. The major di®erence is

that we use on-chip Block RAM exclusively

to store all data structures and bit vectors.

The resulting cir- cuit consumes less than

1% of the available logic resources. In an

OC48 network, the worst case tra±c pattern

for packet classification occurs when the

link is saturated with packets having the

smallest length of 40 bytes. The packet

arrival rate reaches 2:4G=(40£8) = 7:5M=s.

For an FPGA that runs on a synchronous

100MHz clock; this gives 13 cycles to

classify one packet. FIPL was designed for

larger scale IP pre¯ x lookup so the data

structure was stored in o®-chip memory. In

our design, the data structure is small

enough to be hold in on-chip Block RAM.

This greatly improve the memory access

e±ciency since only a single clock cycle is

needed to retrieve a memory word. A single

FIPL engine for each port can satisfy our

worst case throughput requirement. The

whole circuit consumes less than 10% of the

available logic and less than 20% of the

available block RAMs.

With more advanced FPGA parts such as the

V2Pro and the Virtex-4, we can achieve

several timeshigher clock frequency and

more use of additional memory and logic re-

sources. By deploying more lookup engines

and pipelining the design as described in

[17], 10Gbps throughput can be achieved.

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 32

6. CONCLUSIONS

The BV-TCAM architecture efficiently

classi¯ es header rules for NIDS in an FPGA.

The multi-match requirement sets this work

apart from other general packet

classification systems. Our major

contributions have two aspects. First, while

using the TCAM as a component, we avoid

the need to expand the size of the rule set by

only using TCAM to classify the ¯ elds that

is represented as pre¯ x or exact value.

We further compress the number of entries

needed in TCAM due to the fact that the

number of distinct combined values of these

¯ elds is much less than the total number of

rules. Second, after the port ranges are

transformed to pre¯ xes, we use a Tree Bitmap

approach to implement the multi-bit trie Bit

Vector algorithm. To the best of our

knowledge, this is the ¯ rst attempt to use it

in Bit Vector algorithm implementation for

packet classification.

Through the parallel operation and data

structure size compression, the architecture

is optimized for both through- put and

storage e±ciency. It is ¯ t for straightforward

FPGA implementation with fairly low

system complexity. The circuit is

sufficiently general to handle large scale

packet classification problems. In this paper,

we focused on the intrusion detection

application. With the aid of the fast header

classification, other deep packet inspection

functions, such as the multi-pattern string

matching, can benet in terms of both lower

false positive rate and lower processing

overhead.

REFERENCES

[1] Snort - The Open Source Network

Intrusion Detection System. In

http://www.snort.org.

[2] F. Baboescu and G. Varghese. Scalable

Packet Classi¯ cation. In ACM Sigcomm, San

Diego, CA, Aug. 2001.

[3] Z. Baker and V. Prasanna. Automatic

Synthesis of E±cient Intrusion Detection

Systems on FPGAs. In Proceedings of

FPL'04, 2004.

[4] Z. Baker and V. Prasanna. Time and

Area E±cient Pattern Matching on FPGAs.

In Proceedings of FPGA'04, 2004.

[5] Y. Cho and W. Mangione-Smith. Deep

Packet Filter with Dedicated Logic and Read

Only Memories. In Proceedings of IEEE

FCCM'04, 2004.

http://www.ijiemr.org/
http://www.snort.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 33

[6] C. Clark and D. Schimmel. E±cient

Recon¯ gurable Logic Circuits for Matching

Complex Network Intrusion Detection

Patterns. In Proceedings of FPL'03, 2003.

[7] B. L. Hutchings, R. Franklin, and D.

Carver. Assisting Network Intrusion

Detection with Recon¯ gurable Hardware. In

Proceedings of IEEE FCCM'02, 2002.

[8] T. V. Lakshman and D. Stiliadis. High-

Speed Policy-based Packet Forwarding

using Efficient Multi-dimensional Range

Matching. In ACMSigcomm, Sept. 1998.

[9] T. Lee, S. Yusuf, W. Luk, M. Sloman, E.

Lupu, and N. Dulay. Irregular

Recon¯ guration CAM Structures for

Firewall Application. In Proceedings of

FPL'03, 2003.

[10] H. Liu. E±cient Mapping of Range

Classi¯ er into Ternary-CAM. In IEEE

Symposium on High Performance

Interconnects (HotI), Stanford, CA, Aug.

2002.

[11] J. V. Lunteren and T. Engbersen. Fast

and Scalable Packet Classi¯ cation. IEEE

Journal on Selected Areas in

Communications, 21:560{570, May 2003.

[12] M. Roesch. SNORT - lightweight

intrusion detection for networks. In 13th

Systems Administration Conference, 1999.

[13] I. Sourdis and D. Pnevmatikatos. A

Methodology for the Synthesis of E±cient

Intrusion Detection Systems on FPGAs. In

Proceedings of FCCM'04, 2004.

[14] E. Spitznagel, D. Taylor, and J. Turner.

Packet Classi¯ cation using Extended

TCAMs. In IEEE International Conference

on Network Protocols (ICNP), 2003.

[15] V. Srinivasan and G. Varghese. Faster

IP Lookups using Controlled Pre¯ x

Expansion. In SIGMETRICS, 1998.

[16] D. Taylor. Survey and Taxonomy of

Packet Classi¯ cation Techniques. Tech.

Report WUCSE-2004-24, Department of

CSE, Washington University in St. Louis,

2004.

[17] D. Taylor, J. Turner, J. Lockwood, T.

Sproull, and D. Parlour. Scalable IP Lookup

for Internet Routers. IEEE Journal on

Selected Areas in Communications,

21:522{534, May 2003.

[18] W.N.Eatherton. Hardware-Based

Internet Protocol Pre¯ x Lookups. Master

Thesis, Washington University in St. Louis,

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 34

http://www.arl.wustl.edu/, 1999. [19] Xilinx.

Contend-Addressable Memory v4.0. Xilinx

Product Speci¯ cation DS253 (v1.0), March

2003.

[20] F. Yu and R. Katz. E±cient Multi-

Match Packet Classi¯ cation and Lookup

with TCAM. In IEEE Symposium on High

Performance Interconnects (HotI), Stanford,

CA, Aug. 2004.

AUTHOR 1 :-

*K.Brahma Chary completed his B tech in

SVS Institute of technology in 2013 and

pursuing M-Tech in Vaagdevi College of

Engineering

AUTHOR 2:-

**B.Saritha is working as Assistant

Professor in Dept of CSE, Vaagdevi College

of Engineering

http://www.ijiemr.org/
http://www.arl.wustl.edu/

