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ABSTRACT 

 
FPGA technology has become widely used for real-time network intrusion detection. In this 

paper, a novel packet classification architecture called BV-TCAM is presented, which is 

implemented for an FPGA-based Network Intrusion Detection System (NIDS). The classifier can 

report multiple matches at gigabit per second network link rates. The BVTCAM architecture 

combines the Ternary Content Addressable Memory (TCAM) and the Bit Vector (BV) algorithm 

to effectively compress the data representations and boost throughput. A tree-bitmap 

implementation of the BV algorithm is used for source and destination port lookup while a 

TCAM performs the lookup of the other header fields, which can be represented as a prefix or 

exact value. The architecture eliminates the requirement for prefix expansion of port ranges. 

With the aid of a small embedded TCAM, packet classification can be implemented in a 

relatively small part of the available logic of an FPGA. The design is prototyped and evaluated in 

a Xilinx FPGA XCV2000E on the FPX platform. Even with the most difficult set of rules and 

packet inputs, the circuit is fast enough to sustain OC48 traffic throughput. Using larger and 

faster FPGAs, the system can work at speeds greater than OC192. Categories and Subject 

Descriptors C.3 [Computer Systems Organization]: Special Purpose and Application-based 

Systems General Terms Algorithms, Design, Security Keywords Reconfigurable Hardware, 

FPGA, Packet Classification, NIDS, TCAM, BV, Tree Bitmap ∗This work was funded by a 

grant from Global Velocity. without fee provided that copies are not made or distributed for 

profit or commercial advantage and that copies bear this notice and the full citation on the first 

page. 
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INTRODUCTION 

 
Network intrusion detection systems that 

protect high speed computer networks 

demand both high throughput and flexibility 

to handle new threats. Such systems classify 

Internet packets based on both the header 

fields and the strings in the packet content or 

traffic flow. FPGA technology is desirable 

since it offers both high performance and the 

ability to reconfigure. Packet header 

classification is an integrated part of a 

fullfeatured NIDS. Rules in an intrusion 

detection database usually contain 5-tuple 

header filters (i.e. Source IP Address, 

Destination IP Address, Protocol, Source 

Port and Destination Port) plus some strings 

(also known as “signature”). In a full- 

featured NIDS rule database, signatures can 

have variable lengths and be located at any 

offset in the packet. Packet header fields, 

however, are constant in length and appear 

at fixed location in the packet. Though in 

high level we can see content string 

matching is another dimension of 

classification problem, existing packet 

classification algorithms are not easy to be 

extended to handle the string matching. Due 

to the different nature of strings and packet 

header fields, it is desirable to separate the 

header classification process from the string 

matching process. A cross-product of the 

two results can be used to determine a 

complete rule match. A signature, however, 

might indicate a potential attack only in a 

specific context defined by the header fields. 

Matching the signatures independently of 

the header can greatly reduce the system’s 

performance. In fact, if the performance of 

the cross-product is poor, attackers may 

overload the system by injecting worst-case 

traffic. The system can be vulnerable to a 

Denial of Service (DoS) attack or fails to 

catch the sneak attacks. For this reason, 

some software based NIDS match the header 

filters first then scan the content in the 

context. But the performance of these 

systems is generally poor due to the lack of 

the parallelism and inefficient data structure. 

Snort is a popular open source NIDS which 

uses signatures to detect malicious activities 

over the Internet [12, 1]. Unfortunately, this 

software based system cannot keep up with 

high speed networks. The system drops 

packets when the input traffic load exceeds 

the processing power of the CPU, on which 

http://www.ijiemr.org/


www.ijiemr.org Volume number:01, Issue number:02 Page 18 

 

 

 

 

the software runs. Within Snort, the 

incoming packet header compares against 

the header filters sequentially and then the 

packet payload compares against the 

signatures in the context sequentially. On 

the other hand, in hardware, packet header 

classification and content scanning can be 

performed in parallel, which improves the 

overall system throughput. More efficient 

and hardware-oriented data structures can be 

used to accelerate the processing of each 

part. For packet classification, some 

algorithms achieve high performance at the 

cost of high system complexity, high 

resource usage, or high power consumption. 

Some algorithms are very efficient in terms 

of resource usage but with poor processing 

throughput. Some algorithms are only 

suitable for the software implementations. 

Analysis of the characteristics of the NIDS 

database reveals ways to best exploit 

hardware parallelism and efficiently utilize 

the FPGA core components. Snort is a 

popular open source NIDS which uses 

signatures to detect malicious activities over 

the Internet [12, 1]. Unfortunately, this 

software based system cannot keep up with 

high speed networks. The system drops 

packets when the input traffic load exceeds 

the processing power of the CPU, on which 

the software runs. One of the well-known 

signature-based rule sets is provided with 

Snort. Snort rules are contributed by the 

network security community. Most of the 

recently found network exploits can be 

extracted by experts as new signatures and 

be added to the Snort rule set promptly. The 

database of signatures has become very 

large and keeps growing. However, among 

the thousands of the Snort rules, there are 

only about 200 distinct header rules1 . This 

reveals that the number of distinct header 

rules in NIDS is typically small comparing 

to the number of rules in a core router 

database. This occurs since NIDS are 

usually deployed at the edge of an enterprise 

network and used to protect the internal 

network form outside world. Though the 

size of header rule set is moderate, it is still 

prohibitive for a linear search. One more 

subtle point is that header classification for a 

NIDS needs to provide all the matches 

rather than just the highest priority one, 

because any header match may lead to a 

complete rule match. So we cannot apply 

priority-based algorithms that terminate 
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without giving a thorough list of matching 

rules. In this work, we detail the design of a 

packet classification architecture named BV- 

TCAM for network security applications in 

FPGA hardware. BV-TCAM uses a small 

embedded TCAM with programmable logic 

and block RAMs in a Xilinx FPGA. We 

show that it should be possible to port this 

design into a newer and larger FPGA for a 

full functional NIDS and work at over 

OC192 throughput. The rest of the paper is 

organized as follows. Section 2 states the 

problem we intend to solve and set it in 

context. Section 3 reviews some related 

works that motivated our design. Section 4 

describes our design in detail and Section 5 

prototypes the design and evaluate its 

performance. Lastly Section 6 summarizes 

our contributions and concludes the work. 

2. PROBLEM STATEMENT 

 
The formal statement of the general packet 

classification problem is: There are k 

relevant packet header fields H1, H2, ..., Hk, 

where each field is a bit string and allows 

one of 1The Snort rules are represented in an 

abstract and compact way, so one such 

header rule may represent several rules in an 

implementation. But the total number of 

distinct header rules is still small and much 

less than the number of content rules three 

kinds of matches: exact match, prefix match 

or range match. The header rule set contains 

a sequence of N rules R1, R2, ... RN . Each 

rule is a combination of k header fields. A 

rule is said to match a packet if each field in 

the rule matches the corresponding field in 

the packet header in the specified way. In 

many of the packet classification 

applications, an action occurs on the 

matched packet. For example, in a network 

router, the matching guides the forwarding 

decision. In a network firewall, packets are 

filtered or logged when a match is detected. 

But in network intrusion detection, a header 

match is not enough to identify a malicious 

packets. Further inspection needs to be 

conducted. An example rule from Snort 

database is shown below: alert tcp $EXT 

NET any → $HOME NET 53 (msg:“DNS 

named version attempt”; flow:to 

server,established; content:“|07|version”; 

offset:12; nocase;) If the content signatures 

appears at specified location in any 

established TCP flow which is from outside 

network to any host’s port 53 in local 
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network, an alert message will be sent to the 

administrator. We can separate this rule to a 

header part and a content part. We represent 

this header rule as a 5-tuple string {Source 

IP Address = any, Destination IP Address = 

internal network prefix, Protocol = TCP, 

Source Port = any, Destination Port = 53}. It 

turns out that many rules may share a 

common Snort header rule. We classify the 

packet based on the header first, then use 

this information to guide further inspections 

of the packet content. 

3. RELATED WORK 

 
Using FPGA for network intrusion detection 

has become a hot topic in recent FPGA 

research [7, 5, 13, 6, 4, 3]. One compute- 

intensive task in NIDS is pattern matching. 

Most of the related work focused on the 

efficient pattern matching problem. 

However, packet header classification is 

another integral part of a full-featured NIDS. 

Many algorithmic and architectural 

approaches have been proposed to classify 

packets. The software solutions are weak in 

terms of performance while the hardware 

solutions are overly complicated or costly to 

implement. It is still an open and 

challenging problem to find practical 

solutions. A good review of packet 

classification algorithms and architectures 

can be found in [16]. Here we focus on a 

particular method well suited for an FPGA 

implementation. Ternary Content 

Addressable Memory (TCAM) is currently 

the most popular method for packet 

classification in practice. TCAM has the 

ability to store a “don’t care” state in 

addition to a binary bit value. Input keys are 

compared with every TCAM entry in 

parallel. Given N distinct rules in a rule set, 

it only needs the O(N) storage and performs 

in O(1) lookup time. But there are issues 

related to the TCAM solution. TCAMs have 

low density and high power consumption. 

TCAMs also do not support direct range 

representation. In the header rules, the 

source port and destination port fields are 

usually defined as ranges. Although a range 

can be converted into a series of prefixes, 

this processing can greatly expand the rule 

set size. For example, in the worst case, a 

sub-range of a k bit field can be converted 

into 2(k − 1) prefixes. The number of 

expansions is multiplied to be up to 4(k − 

1)2 when two port ranges are defined in the 
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header fields. This means in the worst case a 

single rule may expand to 900 TCAM 

entries. Analysis on Washington 

University’s CTS firewall rule set shows 

even a small set of 150 header rules 

explodes to 17000 different rules after the 

ports are transformed from range to prefixes. 

So direct use of a TCAM in this way is very 

inefficient. There has been research on 

methods to match ranges more efficiently 

with TCAMs. Spitznagel et al. proposed a 

novel TCAM architecture called Extended 

TCAM (ETCAM) which supports direct 

range lookup [14]. A special logic circuit 

that performs the range check is appended 

after the normal TCAM cells. By only 

doubling the overall number of CMOS logic 

cells, it maintains the rule database in its 

original size. A scheme proposed by Liu 

introduced a range mapping method for 

TCAM without expanding the rule set size 

[10]. Given the fact that the number of 

distinct port ranges is limited even in a large 

database, a bit vector is created for each 

range field. Each distinct range is assigned a 

bit position in the bit vector. So in a TCAM 

entry, besides the normal {value, mask} pair 

for IP addresses and protocol fields, two bit 

vectors present with the corresponding range 

bit set to 1 and all other bits set to “don’t 

care”. A lookup key translation table is also 

created for each port field. The table index is 

the port value; each entry in this table is a bit 

vector. The bit is set to 1 only if the port 

value is within the corresponding range. To 

perform a header classification, the packet 

ports values are used to lookup the key 

translation tables, then the outputs are 

attached to the other 3 fields to form the 

lookup key to TCAM. Though this scheme 

doesn’t expand the number of TCAM 

entries, it does have cost: the number of bits 

for each entry is expanded proportionally to 

the number of distinct port ranges, which is 

not scalable. Secondly, this scheme needs 

two large translation tables with a size of 

64K × (#of distinctranges). This is so large 

that it will not fit in the embedded block 

RAMs available in most FPGA devices and 

it could not even be able to be implemented 

in off-chip SRAMs. Yu et al. proposed 

another TCAM-based solution for intrusion 

detection [20]. They address the multi-match 

packet classification by preprocessing the 

header rule set to effi- ciently use the TCAM 

capacity: Firstly, they extend the rule set and 
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add a corresponding memory. The TCAM 

uses the first match entry to retrieve all 

matches. Secondly, a method is shown to 

remove the negations without signifi- cantly 

expanding the rule set. Both steps only 

moderately expand the size of the rule set in 

practice but it cannot guarantee the worst 

case scalability. The Parallel Packet 

Classification (P 2C) by Lunteren et al. [11] 

is also a TCAM-based algorithm. Each field 

of the header is encoded to less bits through 

preprocessing. For each header rule, code 

words of all fields are concatenated to form 

a TCAM entry. Though the total number of 

TCAM entries still equals the number of 

header rules, each entry needs much less bits 

than original header rule. This scheme is 

impressive for a large scale rule set, 

however, to assemble the TCAM lookup 

key, each header field must perform a single 

field search first to retrieve a code. The 

proposed solution also needs the port range 

expansion and performs tree based lookups. 

This tends to lower the system throughput. 

Another practical packet classification 

algorithm often referred as Lucent Bit 

Vector (BV) was initially proposed by 

Lakshman et al. [8]. The BV scheme is 

targeted for hardware implementation. It 

decomposes the multiple header fields 

matching problem into several instances of 

single field matching problem. The idea is to 

search for rules that match each field of the 

packet header and represent the results as a 

set of bit vectors. Each rule is represented as 

one bit in every bit vector. If a header field 

matches the same field of a rule, the 

corresponding vector bit is set to 1 otherwise 

it remains 0. After all bit vectors are 

acquired, the rules that match the header can 

be obtained by intersecting the bit vectors. 

This scheme is simple in that it only use 

memory access and logic AND operation. If 

a binary search is used for each field, this 

scheme has an O(logN) search time where N 

is the number of rules in the rule set but it 

needs O(N 2 ) memory, which is large in 

practice. The authors implemented BV in an 

FPGA operating at 33 MHz and five 128 

Kbyte Synchronous SRAM chips. The 

configuration supports up to 512 rules and 

processing 1 million packets per second in 

the worst case. In the original BV algorithm, 

in the case where the number of rules is 

large, the bit vector is wider than the 

memory data bus causing a bit vector 
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retrieval to require several sequential 

memory accesses. Baboescu et al. enhanced 

the BV idea and proposed an improved 

algorithm called Aggregated Bit Vector 

(ABV) [2]. They built a bit vector using the 

longest prefix search tree. Each bit vector is 

partitioned into k blocks. The natural block 

size is the largest number of bits that one 

memory access can fetch. An aggregate bit 

vector summarizes the bit vector which is 

stored along with the normal bit vector. If 

there is any 1 in a block, the corresponding 

bit in aggregate bit vector is set to 1; 

otherwise it remains 0. Upon lookups, the 

aggregate bit vectors for all the checked 

fields are ANDed first to get the 

intersection. Based on this smaller bit 

vector, only those blocks that contain any 

potential match are checked further. 

Preprocessing is needed to reorder the rules 

so that the 1s are denser in the bit vector, 

therefore the aggregate bit vector is more 

useful to reduce the number of memory 

access. The BV and ABV algorithms are 

hardware-based. The bit vector lookups for 

different header fields can execute in 

parallel. For the 5-tuple header search, 5 

groups of independent accessible memories 

are used. However, the searching time over 

each tuple is unbalanced: there are 32 bits in 

an IP address but only 16 bits in a protocol 

port. The prefix lookup for IP is 2 times 

slower in average than the lookup for port 

and thus affects the overall performance 

negatively. The design described in this 

paper handles this problem by using a 

hybrid architecture. 

4. BV-TCAM ARCHITECTURE 

 
Our design combines and optimizes the 

TCAM and Bit Vector algorithms for packet 

header classification in NIDS. As mentioned 

earlier, network intrusion detection systems 

require header classification to report all 

matches, not just one. In usual applications, 

TCAM is associated with a priority encoder 

than only reports the ID of the matched 

entry with the highest priority. In this 

application, we prefer an un-encoded 

TCAM. That is, the number of output bits 

equals the number of TCAM entries and 

each bit indicates the matching status of the 

corresponding TCAM entry. Just like the 

BV output, the Un-encoded TCAM output 

forms another bit vector and each bit in the 

vector indicates the match to the 
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corresponding rule field(s) or not. So the 

idea 

 

 
is that the header ¯ elds are partitioned in a 

way that some of them are classi¯ ed using 

TCAM while the others are clas- si¯ ed 

using Bit Vector algorithms. Particularly, we 

exclude source and destination port ¯ elds 

from TCAM while keeping IP address and 

protocol ¯ elds in TCAM. We order the rules 

in same sequence, hence we can intersect all 

the output bit vectors to get the set of 

matches. This method optimizes the size of 

the TCAM, as it does not expand the 

number of TCAM entries. 

TCAM could be programmed using the 

three ¯ elds of an IP packet directly, but we 

do better by further savings of the expensive 

TCAM entries. We observe that several 

di®erent header rules usually share the same 

address and protocol ¯ elds, so we can 

compress these rules into a single TCAM 

entry. A similar idea is used in [9] to 

optimize the hardware implementation of an 

irregular TCAM architecture. Extra logic is 

needed to decompress or map the TCAM 

output bit vector to a full size bit vector. In 

order to realize this idea, we sort the header 

rule set to group those rules together 

that share the identical address and protocol 

¯ elds, and then label each rule with a global 

identi¯ er in order. We only program the 

distinct ¯ rst three ¯ elds into the TCAM. 

Each output bit of the TCAM is used to set 

or reset a group of D type registers. In this 

way, a full size bit vector is formed in which 

each bit corresponds to a header rule. 

To better illustrate our design, a small set of 

example header rules is shown in Table 1. 

Note that the rules are al- ready sorted as 

described above. The corresponding circuit 

that performs TCAM related partial 

classi¯ cation is shown in Figure 1. Though 

this scheme is the fastest, it does not support 

incremental updates. Because of the fact that 

the header rule database update is much 

more infrequent than the actual lookup, the 

¯ eld-reprogrammable capability of the 

FPGA is utilized. Whenever a new update is 

needed, a new bit ¯ le can be generated then 
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recon¯ gured  into the  FPGA. Faster 

incremental updates can be supported by at- 

taching a memory entry to each TCAM 

output which   en-  codes the partial 

decompressed  vector.  Since  typically a 

packet may match a few TCAM entries, 

several memory ac- cesses are needed to 

retrieve and decode the memory word to 

build a full bit vector. In our design we use 

the ¯ rst method for simplicity and fast 

prototype. We  adopt  the   bit vector 

algorithms as described in ABV algorithm 

for port classi¯ cation. Speci¯ cally, we build 

the port pre¯ x lookup tree for bit vector 

searching. Since we can build a very wide 

memory data bus using on-chip Block 

RAM, we do not need to use the aggregated 

bit vector for this scale of problem2. To 

build the binary port pre¯ x 2There are only a 

few hundred distinct header rules in Snort 

database. If the entire bit vector can be read 

in one memory access, there is no need to 

aggregate the bit vector. This can both 

improve the performance and eliminate the 

reprocess- 
 

lookup tree, each port's ranges are ¯ rst 

transformed into a series of pre¯ xes. All 

pre¯ xes are then inserted into a binary 

decision tree. The branch decision at each 

level is decided by the bit pattern in the 

pre¯ x. Each valid pre¯ x node has a bit 

vector created. The bit vector indicates all 

the rules with its port de¯ nition matching to 

this pre¯ x. The lookup procedure becomes a 

longest pre¯ x matching problem for the 

packet port. Upon receiving a port value 

from a packet header for classi¯ cation, The 

search is conducted by travers- ing the tree 

using the bits of the address, starting with 

the most signi¯ cant bit. The search 

terminates when the bits are exhausted or a 

leaf of the tree is reached. The bit vec- tor 

stored at the matched longest pre¯ x node is 

retrieved. After we get all three bit vectors 

from the TCAM and the two longest pre¯ x 

lookup trees, the set of matches can be 
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determined by simply intersecting these bit 

vectors. 

Here we still transform ranges to pre¯ xes, 

however, we use them to build decision trees 

rather than  a brute force TCAM 

programming. A decision tree uses cheap 

memo- ries to store the data structure instead 

of expensive TCAM entries. The size of the 

decision tree is not as sensitive to the 

number of pre¯ xes as the TCAM, because 

the size of TCAM increases linearly with the 

number  of pre¯ xes. In  decision tree, 

additional pre¯ xes  may not change the size 

of the data structure at all if the pre¯ xes can 

be mapped on existing tree nodes. Another 

important feature of decision tree is that the 

worst-case search time does not depend on 

the number of pre¯ xes in set, but only 

depends on the depth of the tree. 

Optimizations are possible to search for the 

longest pre¯ x match. In order to speed up 

the lookup process, multi-bit trie schemes 

were developed which perform a search 

using multiple bits of the lookup bit string at 

a time. Controlled Pre¯ x Expansion and 

Leaf Pushing are two important tech- niques 

for fast multi-bit trie lookup introduced by 

Srinivasan and Varghese [15]. These and 

other similar techniques are optimized for 

performance but have high memory 

consump- ing e®ort. We will show this is 

the case in our design tion. Unlike the IP 

lookup problem, where each valid trie node 

only stores the next hop IP information, our 

scheme stores a much wider bit vector. With 

limited resources, we desire a scheme which 

consumes less memory and could ¯ t in an 

FPGA. The Tree Bitmap introduced by 

Eatherton and Dittia [18] works well for this 

problem. This technique avoids pre¯ x 

expansion and leaf pushing while using a 

clever indexing scheme to dramatically 

reduce the memory penalty associated with a 

naive implementation. For each node in a 

multi-bit trie, Tree Bitmap algorithm uses an 

Extend-ing Paths Bitmap to represent the 

subset of the potential children that are 

actually present, and an Internal Pre¯ x 

Bitmap to represent the pre¯ xes associated 

with the given node. Children of a node are 

stored in consecutive memory locations. 

Similarly, the next hop information 

associated with a node is stored in a group 

of consecutive memory lo- cations. By 

counting the number of 1's in the bitmaps, 

the scheme allows the use of a single pointer 
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to reference the children and next hop 

information. In our application, a bit vector 

is stored instead of the next hop information. 

The bit vector is much wider hence more 

resource consuming than the next hop 

information, but the total number of bit 

vectors is small, so this not a serious 

concern for our design. 

 

 
 

Using the example shown in Table 1, we 

transform the source port range to a series of 

pre¯ xes as shown in  Table 2.  The 

corresponding  multi-bit trie using Tree 

Bitmap is shown in Figure 2. The trie stride 

is 4. Each black dot represents a valid pre¯ x 

and is virtually associated with a bit vector. 

The four valid pre¯ xes contained in the root 

trie node are labeled in the Internal Pre¯ x 

Bitmap and the four possible child branches 

are labeled in the 

Extending Paths Bitmap. 

Besides these two Bitmap vectors, 2 pointers 

are maintained pointing to the ¯ rst pre¯ x's 

bit vector and the ¯ rst child node's address. 

All other trie node are structured in similar 

way. There is a slight di®erence in the 

deepest level trie node where there are no 

more extending paths present. Instead, each 

so called \extending path" is already an 

exact match. So the pointer for \extending 

path" here actually points to a base address 

where the bit vectors are stored. While 

splitting tree technique is proposed in [17] to 

deal with this issue, we apply this alternative 

to keep the design simpler and lower the 

resource consumption. For example, if a 

packet with source port 2559 (09FF in 

Hexadecimal) needs to be classi¯ ed, The 

root node bitmaps are checked which 

correspond to the ¯ rst nibble of the port, 

\0000". So far the best match is \*" and 

meanwhile the extending paths bitmap 

indicates a possible child. This best match is 

latched and then the pointer is followed to 

the child 
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node. In the child node, there is no further 

possible child node for the second nibble 

\1001" and the best match pre¯ x is \0000 

1*** **** ****". The old best match is 

°ushed and the new best match is the longest 

pre¯ x match. The bit vector's address is 

calculated by the base pointer and the bit 

o®set in the internal pre¯ x bitmap. Finally, 

the bit vector \101010" is retrieved, which 

means the header rule 1, 3 and 5 are all 

matched. Whenever it is impossible to 

advance along the trie paths to ¯ nd a new 

pre¯ x match, the stored best match pointer is 

used to retrieved the bit vector. 

5. IMPLEMENTATIONAND 

EVALUATION 

A full FPGA-based NIDS is under 

development which will implement a full- 

featured network intrusion detection system. 

While our solution is general enough to 

perform any kind of packet classi¯ cation, we 

optimize our design to incor- porate the 

Snort rule set. We show that only a small 

amount of memory and logic is needed to 

implement a circuit that achieves a fast 

header classi¯ cation rate. 

Speci¯ cally, we prototype the design in a 

Xilinx XCV- 2000E FPGA. The block 

diagram of the circuit is illustrated in Figure 

3. Our packet header rule set is extracted 

form Snort database V1.9.03. There are a 

total of 222 unique header rules. Since the 

NIDS is usually deployed on the edge of the 

protected network and only monitors the 

pass- through tra±c, we can logically change 

the source IP ad- dress from the external 

network to a wildcard \any" wher- ever the 

peer IP address is in the internal network. 

After this translation, the fSource IP, 

Destination IP, Protocolg combinations are 

successfully compressed to have only 33 

distinct values. That means in the most 

compact way, we just need a 33 £ 72bits 

TCAM. This size of TCAM can be 

implemented using an embedded core on the 

FPGA without consuming too many 

resources. 

The brute force implementation of TCAM 

using logic gates includes a set of registers 

and logic to perform parallel bit- wise XOR 
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and NAND operations. A 2-entry TCAM 

exam- ple is shown in Figure 4. In our 

design, we use Xilinx Core Generator to 

generate the TCAM component [19]. This 

TCAM core is comprised of multiple blocks 

of SRL16Es linked by carry-chains. The 

TCAM has a single-clock la- 3The Snort 

database is updated often and the latest 

version, V2.2.0, has been released. But we 

¯ nd that the size of the header rule set barely 

change, especially for the 3 ¯ elds that a®ect 

the TCAM. We believe our implementation 

of the BV 

algorithm can scale well to foreseeable Snort 

updates. 

 

 

 

 

 

 

 

tency  on its read operation which is 

desirable for our high speed processing. We 

set the match address options to be\multiple- 

match unencoded" so that the output is the 

bit vector we need. The core uses 1188 

SRL16Es which counts only 3% of the 

available SRL16Es in XCV2000E. With a 

larger FPGA like XC2V10 000, the resource 

consumption for TCAM is as little as only 

1%. This also implies that the TCAM scales 

to a reasonable larger size of header rule 

database. For the multi-bit trie, the worst 

case memory consumption and lookup 

e±ciency can be determined, given the stride 
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of S and the trie degree of k. The worst case 

memory consumption happens when we 

have a complete trie with depth l. We de¯ ne 

N as the total number of trie nodes and b as 

the total number of bits to store the node 

data structure, except the memory for bit 

vectors. Since we store the trie data struc- 

ture in limited on-chip Block RAM, it is 

critical to keep the size of the trie data- 

structure as small as possible under the 

throughput constraint. Each trie node 

maintains an \Inter- nal Pre¯ x Bitmap" with 

length (k ¡ 1) and an \Extending Paths 

Bitmap" with length k. There are also 2 

pointers and we assign 16 bits for each4. So 

the size of one node is 

 

 

 

4This means that we can support up to 64K 

pre¯ xes and 64K trie nodes. This number of 

pre¯ xes is more than enough for practical 

network intrusion detection systems. For 

example, in Snort's source port pre¯ x trie, 

there are only 477 binary trie nodes in total 

and less than 100 distinct pre¯ xes. The 

larger the stride is, the less the memories are 

needed and at same time less memory 

accesses are needed to get the ¯ nal bit 

vector. On the FPGA XCV2000E, there are 

655,360 bits of Block RAM available. The 

multi-bit tries with stride 4 and 8 both 

satisfy the constraints. But the bitmap's 

length increases exponentially as the stride 

becomes larger, this in turn lowers the speed 

to calculate the addresses of bit vector or 

next trie node. For a real database with a 

smaller stride, the bitmaps is signi¯ cantly 

sparser, so the real number of trie nodes is 

actually far less than the worst case 

estimation. 

In terms of the memory e±ciency, a smaller 

stride is more favorable. As a tradeo®, we 

choose stride size 4 in our design. So in 

worst case, at most 4 steps walking in the 

trie are needed to obtain the bit vector. 

Parsing the Snort header rules, we get 87 

distinct pre¯ xes for source port and 177 for 

destination port. We have 222 rules in total 

that means each bit vector is 222 bits long. 

So the total memories required to store the 

bit vectors are only 58,608 bits (i.e. 9% of 

the total available bits in XCV2000E). 

This is small enough to be hold in on-chip 

block RAM. In Table 4, we give the total 

memory usage for the source port pre¯ x trie 
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under di®erent strides, including the bit 

vectors. 

Clearly, at stride 4, we achieve the optimal 

memory e±- ciency as well as a relatively 

fast lookup speed. In the worst case, at most 

5 memory accesses are needed to retrieve a 

bit vector (i.e. 4 accesses to traverse the trie 

and 1 access to retrieve the bit vector). 

Destination port pre¯ x trie hold the similar 

results. We assumes that in the 

implementation, each trie node uses a 64- 

bits word, each bit vector uses a 256-bits 

word and both can be read in one clock 

cycle by using fast on-chip Block RAMs. 

An FPGA-based Tree Bitmap algorithm has 

been implemented at Washington University 

[17]. This circuit is called the Fast Internet 

Protocol Lookup (FIPL) search engine. 

Multiple FIPL engines can work together to 

improve the system throughput. We directly 

borrow this implementation and modify it to 

¯ t the BV algorithm. The major di®erence is 

that we use on-chip Block RAM exclusively 

to store all data structures and bit vectors. 

The resulting cir- cuit consumes less than 

1% of the available logic resources. In an 

OC48 network, the worst case tra±c pattern 

for packet classification occurs when the 

link is saturated with packets having the 

smallest length of 40 bytes. The packet 

arrival rate reaches 2:4G=(40£8) = 7:5M=s. 

For an FPGA that runs on a synchronous 

100MHz clock; this gives 13 cycles to 

classify one packet. FIPL was designed for 

larger scale IP pre¯ x lookup so the data 

structure was stored in o®-chip memory. In 

our design, the data structure is small 

enough to be hold in on-chip Block RAM. 

This greatly improve the memory access 

e±ciency since only a single clock cycle is 

needed to retrieve a memory word. A single 

FIPL engine for each port can satisfy our 

worst case throughput requirement. The 

whole circuit consumes less than 10% of the 

available logic and less than 20% of the 

available block RAMs. 

With more advanced FPGA parts such as the 

V2Pro and the Virtex-4, we can achieve 

several timeshigher clock frequency and 

more use of additional memory and logic re- 

sources. By deploying more lookup engines 

and pipelining the design as described in 

[17], 10Gbps throughput can be achieved. 
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6. CONCLUSIONS 

The BV-TCAM architecture efficiently 

classi¯ es header rules for NIDS in an FPGA. 

The multi-match requirement sets this work 

apart from other general packet 

classification systems. Our major 

contributions have two aspects. First, while 

using the TCAM as a component, we avoid 

the need to expand the size of the rule set by 

only using TCAM to classify the ¯ elds that 

is represented as pre¯ x or exact value. 

We further compress the number of entries 

needed in TCAM due to the fact that the 

number of distinct combined values of these 

¯ elds is much less than the total number of 

rules. Second, after the port ranges are 

transformed to pre¯ xes, we use a Tree Bitmap 

approach to implement the multi-bit trie Bit 

Vector algorithm. To the best of our 

knowledge, this is the ¯ rst attempt to use it 

in Bit Vector algorithm implementation for 

packet classification. 

Through the parallel operation and data 

structure size compression, the architecture 

is optimized for both through- put and 

storage e±ciency. It is ¯ t for straightforward 

FPGA implementation with fairly low 

system complexity. The circuit is 

sufficiently general to handle large scale 

packet classification problems. In this paper, 

we focused on the intrusion detection 

application. With the aid of the fast header 

classification, other deep packet inspection 

functions, such as the multi-pattern string 

matching, can benet in terms of both lower 

false positive rate and lower processing 

overhead. 
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