
Page 32 www.ijiemr.org Volume number:01,Issue number:02

Efficient Implementation of Non-binary Low Density Parity

Check (LDPC) Decoder in VLSI

*S.Sahaja **Mr.B.Ranjith Kumar ***Mr.M.Devadas

*M.Tech Dept of E.C.E, Vaagdevi College of Engineering

**Assistant. Prof Dept of E.C.E, Vaagdevi College of Engineering

***Assistant. Prof Dept of E.C.E, Vaagdevi College of Engineering

Abstract—The best error-correcting performance can be achieved by using non-binary low-

density parity check (NB-LDPC) codes. This can be of reduced decoding complexity with high

cost efficiency and is mostly preferable than binary low density parity check codes. The

proposed scheme not only reduces the computation complexity, but also eliminates the memory

requirement for storing the intermediate messages generated from the forward and backward

processes. A novel scheme and corresponding architecture are developed to implement the

elementary step of the check node processing. In the design, layered decoding is applied and

only nm<q messages are kept on each edge of the associated Tanner graph. The computation

units and the scheduling of the computations are optimized in the context of layered decoding to

reduce the area requirement and increase the speed. There by using this forward and backward

process the memory requirement of the overall decoder can be substantially reduced. Thus to

conclude that the above scheme leads to significant memory and complexity reduction inspired

by the proposed check node processing scheme In addition, efficient architecture have been

designed for the sorter and path constructor, and the computational scheduling has been

optimized to further reduce the overall area and latency.

Keywords-Low-density parity check codes(LDPC),latency, Tanner graph, check node

processing, sorter, path constructor

http://www.ijiemr.org/

Page 33 www.ijiemr.org Volume number:01,Issue number:02

I. INTRODUCTION

Error-correcting coding has become one

integral part in nearly all the modern data

transmission and storage systems. Low-

density parity-check (LDPC) codes are a

class of linear codes which provide near-

capacity performance on a large collection

of data transmission and storage channel

while still maintaining implementable

decoders. Due to the powerful error-

correcting capability, LDPC codes have

been used as error-correcting codes with

applications in wireless communications,

magnetic and optical recording, and digital

television.[2]

Since the first proposition of LDPC codes

by Gallager in his 1960 doctoral

dissertation, LDPC codes were mostly

ignored for the following three decades. One

notable exception is the work of Tanner in

which a graphical representation of LDPC

codes was introduced, now widely called

Tanner graph. In mid-nineties, LDPC codes

were re-discovered by MacKay, Luby,

Wiberg and others. In their works, the

sparsity of the parity check matrix of LDPC

codes was utilized and belief propagation

method proposed by was adopted to

significantly reduce the decoding

complexity [1]. After that, numerous

research efforts have been done and various

decoding algorithms are proposed.

When the code length is moderate, non-

binary low-density parity-check (NB-LDPC)

codes can achieve better error-correcting

performance than binary LDPC codes at the

cost of higher decoding

complexity.[2].However, the complicated

computations in the check node processing

and the large memory requirement put

obstacles to efficient hardware

implementations. VLSI architecture design

connects advanced error-correcting theories

and their efficient hardware implementations

through algorithmic and architectural level

optimizations. Such optimizations are

crucial to meet all kinds of implementation

requirements set up by hardware

applications. In this paper, efficient VLSI

architectures design targeting at non-binary

(NB) LDPC decoder are presented in this

paper. The designs include two decoders

based on two different check node unit

http://www.ijiemr.org/

Page 34 www.ijiemr.org Volume number:01,Issue number:02

(CNU) processing, which are forward-

backward and trellis based CNU processing,

respectively.

II. TRELLIS-BASED CHECK

NODE PROCESSING

In this section, a novel check node

processing method and corresponding

efficient architectures for both Min-max and

EMS NB-LDPC decoding are proposed.

Employing either the Min-max or EMS

algorithm, each c-to-v probability from a

check node can be derived from a limited

number of the smallest LLRs in the input v-

to-c message vectors. Based on this

observation, a limited number of the most

reliable v-to-c messages are first sorted out.

These messages can be considered as nodes

in a trellis. Then the c-to-v messages to all

connected variable nodes are generated

independently using a path construction

scheme without storing other intermediate

values. As a result, both the memory

requirement and logic gate count can be

reduced significantly without sacrificing the

speed

For the decoder based on Min-max

algorithm, compared to the forward

backward check node unit (CNU)

architecture, the proposed architecture can

reduce the memory and area requirements to

19.5% and 22.5%, respectively, when

applied to a (837, 726) NB-LDPC code over

GF(25). Inspired by this novel c-to-v

message computation method, and the fact

that the path construction can be

implemented efficiently, we propose to store

the most reliable v-to-c messages as

’compressed’ c-to-v messages. The c-to-v

messages will be recovered from the

compressed format when needed.

Accordingly, the memory requirement of the

overall decoder can be substantially reduced.

In addition, an optimized scheduling scheme

has been developed for the involved

computations to further reduce the area and

http://www.ijiemr.org/

Page 35 www.ijiemr.org Volume number:01,Issue number:02

latency. Compared to the previous Min-max

decoder architecture, the proposed design

for a (837, 726) code can achieve 54% area

reduction with the same throughput. For the

decoder based on EMS algorithm, compared

to the CNU architecture, our architecture

only requires 64% of the area without

sacrificing both the throughput and error-

correcting performance. This work extended

the idea of trellis-based Min-max check

node processing. However, the path

construction architecture design is

fundamentally different and much more

challenging due to the involved ’sum’

instead of ’max’ computations[3]. The

overall EMS NB-LDPC decoder is the same

to the Min-max decoder except that a

different path constructor is employed.

III. LDPC ENCODER

LDPC codes have easily parallelizable

encoding and decoding algorithms. The

parallelizability is 'adjustable' providing the

user an option to choose between throughput

and complexity. The function of the encoder

is to add extra redundant data for given

decoded data. This extra redundant data,

called as parity data is useful in detecting the

errors that are introduced during the data

transmission through a channel.

The functional block diagram of an encoder

is given below with their functional

specifications. The LDPC encoder receives

code rate, frame size long with the data that

need to encode as inputs. LDPC Encoder has

three main functional blocks. Rate

dependent variable generator, Parity

addresses generator and parity generator.

For a given code rate and frame size, rate

dependent variable generator block

generates the values information bit length,

parity bit length and repeatability rate which

are used in encoding[4]. Parity address

generator contains the address of

information bits that need to be ex-ored for

generating a given parity bit. Parity

generator receives the information bits from

input and address values from parity address

generator block to generate the parity data.

http://www.ijiemr.org/

Page 36 www.ijiemr.org Volume number:01,Issue number:02

IV. SIMULATION RESULTS OF AN LDPC ENCODER

Figure 4. Integer output

http://www.ijiemr.org/

Page 37 www.ijiemr.org Volume number:01,Issue number:02

V. REDUCED-COMPLEXITY

CNU ARCHITECTURE

Using the proposed scheme, the CNU

architecture consists of two parts: a sorter

that sorts out the 1.5nm incoming v-to-c

messages with the smallest nonzero LLRs,

and a path constructor that generates the c-

to-v messages from the sorting results. In the

following, the architectures for these two

parts are presented.

A. V-to-C message Sorter

The figure 5 shows the architecture for the

sorter. The shaded blocks denote RAM

blocks. A pair of RAM S blocks, denoted by

RAM S0 and S1, is used to store the sorting

results in a ping-pong manner. Each RAM S

can record 1.5nm messages and the indices

of the variable nodes they belong to. Hence,

the size of each RAM S is 1.5nm(w + p +

log2 dc) bits[5]. The finite field elements

associated with zero LLRs are stored into

RAM Zero when they are read out from the

v-to-c message RAM. Accordingly, RAM

Zero is of size dc×p bits. In addition, these

field elements are added up to compute

αsum by the adder-register loop in the

bottom right corner of the above figure 5.

The sorting is carried out iteratively in dc

rounds. In the first round, the nm − 1 v-to-c

messages with nonzero LLRs of the first

variable node are copied into RAM S0. In

addition, ’0’ is written to RAM S0 as the

variable node index.[6] In the second round,

comparisons are carried out on the messages

stored in RAM S0 and the v-to-c messages

of the second variable node to find the

1.5nm messages with the smallest nonzero

LLRs. The comparison output vector is

written into RAM S1. Since the entries in

each v-to-c message vector are stored in the

order of increasing LLR, the comparison can

start with the first nonzero-LLR entries in

the two input vectors. If the LLR from RAM

S0 is smaller, the corresponding entry will

be stored into RAM S1. In addition, the next

entry of RAM S0 will be read out and sent

http://www.ijiemr.org/

Page 38 www.ijiemr.org Volume number:01,Issue number:02

to the comparator in the next clock cycle.

Otherwise, the v-to-c message is stored into

RAM S1 together with the current variable

node index.

Similarly, the next entry in the v-to-c

message vector will be read out and sent to

the comparator in the next clock cycle. Such

comparisons will be repeated until 1.5nm

entries are derived for the output vector. In

each of the third and later rounds,

comparisons are carried out on the output

vector from the previous round and the v-to-

c message vector of another variable node.

RAM S0 and S1 are used in a ping-pong

manner to store comparison input and output

vectors. Since 1.5nm entries are kept in the

output vector, 1.5nm clock cycles are

required for the comparisons in each of the

second and later rounds of the sorting.[7] In

addition, one clock cycle is spent on reading

the zero-LLR entry from the v-to-c message

RAM in each round. Hence the sorting takes

nm + (dc − 1) (1.5nm + 1) clock cycles.

http://www.ijiemr.org/

Page 39 www.ijiemr.org Volume number:01,Issue number:02

The above figure illustrates the path

construction architecture that implements

Algorithm B. The 1.5nm sorted v-to-c

messages are read from RAM S one at a

time, starting from the first one, which has

the smallest nonzero LLR. During the path

construction for computing vm,n, e(i), the

index of the variable node that the message

belongs to, is first compared with n in the

comparator block[8]. This block can be

implemented by log2 dc XOR gates and a

log2 dc-input OR gate. If it outputs ’0’, the

message read out is from variable node n,

and thus should not be included in the path

construction. Otherwise, e(i) is passed to the

decoder to generate a dc-bit binary vector, in

which only the e(i)th bit is ’1’. The bit test

block in Fig. 4 carries out bit-wise AND on

this vector and Pk. Then the outputs of the

AND gates are passed to a dc-input NOR

gate.

Hence, the bit test block outputs ’1’ when

Pk(e(i)) ≠1. The α in Algorithm B is

computed by the two finite field adders in

Fig. 4.4. The two multiplexors are added to

enable the computation of αLn(0) at the

initialization. In addition, when α is inserted

into the αLn vector, it is also copied to the

first-in-first-out (FIFO) buffer consisting of

serially concatenated registers. In this way,

each element in αLn can be

simultaneously compared with the newly

computed α in the GF comparator to test if α

αLn.

The GF comparator outputs ’1’ when α

equals none of the elements in the FIFO.

When the comparator, bit test and GF

comparator all output ’1’, the load signal at

the output of the AND gate in the bottom

right corner of Fig. 4 is asserted.

Accordingly, α and the x(i) read from RAM

S are loaded into the Ln and αLn memories,

respectively. In addition, the vector for the

new path is generated by the bit-wise OR

gates, and loaded into the Pk memory.

Using the proposed CNU architecture, only

1.5nm sorted v-to-c messages need to be

http://www.ijiemr.org/

Page 40 www.ijiemr.org Volume number:01,Issue number:02

stored for each check node. Compared to

storing dcnm intermediate messages for each

of the forward and backward processes, the

memory requirement has been substantially

reduced. In addition, this architecture also

requires much less logic gates. As it will be

shown in Section VI, the proposed CNU

architecture for a (837, 726) NB-LDPC code

with dc = 27 only requires 22.5% of the area

of the forward-backward-based CNU

architecture.

VI. TRELLIS-BASED NB-LDPC

DECODER ARCHITECTURE

This section considers the decoder design

for QCNB-LDPC codes, whose H matrix

can be divided into sub-matrices. Each sub-

matrix can be a zero matrix or shifted

identity matrix with nonzero entries replaced

by elements of GF(q) [25]. QCNB-LDPC

codes can achieve very good error-

correcting performance. In addition, they are

more suitable for efficient high-speed

parallel decoding than other NB-LDPC

codes due to the regularity in the H matrix

[9]. As it was mentioned previously, large

memory requirement is a bottleneck of NB-

LDPC decoder implementation since

message vectors instead of single values are

passed between check and variable nodes. In

fact, the memory accounts for 84% of the

overall area of the (837,726) partial-parallel

http://www.ijiemr.org/

Page 41 www.ijiemr.org Volume number:01,Issue number:02

QCNB-LDPC decoder. Inspired by the

novel check node processing scheme

presented in the previous section, we

propose to store the c-to-v messages in a

’compressed’ format. For each check node,

only the 1.5nm sorted nonzero-LLR

messages and the field elements for zero-

LLR messages from the connected variable

nodes are stored. c-to-v messages will be

computed from them when needed.

Although more copies of the path

constructors will be needed, they occupy

much smaller area than the memory required

fo storing the c-to-v messages. Accordingly,

the overall decoder area can be reduced

further by a large factor.

In our design, layered decoding is employed

to reduce the memory requirement and

increase the decoding convergence speed. In

layered decoding, the parity check matrix H

is divided into block rows, also called

layers. The c-to-v messages derived from

the decoding of one layer are used right

away to update the v-to-c messages of the

next layer. Using the construction methods

proposed in [5], the H matrix of a QCNB-

LDPC code over GF(2p) can be divided into

r × t sub-matrices of dimension (2p − 1) ×

(2p − 1). Accordingly, it can be divided into

r layers and the computation for 2p − 1 rows

of H are carried out at a time.

The top level architecture of our proposed

partial-parallel QCNB-LDPC decoder is

shown in figure 9. Three types of RAM

blocks are used in this architecture. Each

copy of RAM A is capable of storing nm

messages for each of the t(2p − 1) variable

nodes. Hence its size is nm × t × (2p − 1) ×

(p + w) bits. It consists of two parts: one for

LLRs and one for corresponding finite field

elements. In our design, the computations

for one block column (2p – 1 column) of H

are carried out at a time. Accordingly, each

part of RAM A is divided into 2p − 1

http://www.ijiemr.org/

Page 42 www.ijiemr.org Volume number:01,Issue number:02

individual RAMs to enable simultaneous

access of necessary messages. Each RAM B

has two sub-blocks. Each sub-block is of

similar architecture to RAM A, except that it

can only store the messages for a single

block column of H. Therefore, the size of a

RAM B is 2nm×(2p−1)×(p+w) bits. The

RAM E blocks inside the sorters serve the

same purpose as the RAM S blocks in figure

9. 2p − 1 copies of the sorters are employed

in the decoder to process one layer of H at a

time. Hence, each RAM E consists of 2p – 1

copies of RAM S and its size is 1.5nm × (2p

− 1) × (w + p + log2dc) bits. The size, data

width, memory depth and memory block

number for each type of RAMs used in our

decoder.

At the beginning of the decoding, the

channel information is loaded into RAM A0,

and is used as the v-to-c messages for the

first layer in the first decoding iteration.The

permutation block in the above Figure is

composed of barrel shifters. It routes

messages for check node processing

according to the locations of the nonzero

entries of H. In addition, the multiplications

of the finite field elements of the messages

by the corresponding nonzero entries of H

are carried out in the multiplication block.

After that, the messages are buffered by

RAM B1. One sub-block of RAM B1 serves

as the v-to-c message RAM to the sorters,

while the other stores the messages for the

next block column of H computed by the

previous decoder unit. Such buffering is

necessary since the messages are not read

out one in each clock cycle by the sorters as

discussed previously.

During the sorting process, two RAM E

blocks are used in a ping-pong manner as

the RAM S0 and RAM S1 in Fig. 4. Then

the c-to-v messages can be recovered from

the sorting results using Path Constructor-I,

which consists of 2p − 1 copies of the

architecture in Fig. 4.6. For QCNB-LDPC

codes, each column of H has at most one

nonzero entry in each layer. Denote the v-to-

c LLRs of layer l in the jth decoding

iteration by u l (j) . Represent the c-to-v

LLRs computed from layer l in the jth

iteration by v l

 (j).

It can be derived that

http://www.ijiemr.org/

Page 43 www.ijiemr.org Volume number:01,Issue number:02

Hence, to compute the v-to-c messages for

the next layer, the outputs of path

Constructor-I need to be added to the inputs

of the sorters to generate the a posteriori

messages (u l (j) + v l (j)). To enable this

computation, the inputs to the sorters are

also stored into RAM A1 while they are

buffered by RAM B1. After the outputs of

Path Constructor-I are buffered by RAM B2,

the a posteriori messages are computed by

the adder in the top right corner of Fig. 4.

Division and reverse permutation should be

applied to the a posteriori messages to

reverse the effects of multiplication and

permutation, respectively. However, the a

posteriori messages can be used to compute

the v-to-c messages of the same block

column of H for the next layer right after.

Hence, the division for a column in layer l

can be combined with the multiplication for

the same column in layer l+1 as a single

constant multiplication, since the entries of

H are known[10]. Similarly, the reverse

permutation for layer l can be incorporated

with the permutation of the same block

column for layer l + 1. Hence, there are no

division and reverse permutation blocks in

our decoder. v l (−1) = 0 in the decoding of

later layers in the first iteration. Hence, for

these layers, the a posteriori messages

computed from the previous layer are the v-

to-c messages of the current layer. Starting

from the second decoding iteration, the c-to-

v messages of the same layer from the

previous iteration need to be subtracted from

the a posteriori messages to generate the v-

to-c messages storing the c-to-v messages of

each layer requires a RAM A, which is

significantly larger than a RAM E when dc

is not small. A RAM A also occupies

substantially more area than path

constructors. Accordingly, we propose to

store the sorted v-to-c messages instead of c-

to-v messages. When c-to-v messages are

needed in the decoding of the same layer in

the next decoding iteration, they are

recovered from the sorting results using Path

Constructor-II, which also has 2p − 1 copies

of the architecture in figure 9. r + 2 RAM E

blocks are required to store the results and

intermediate data of the sorting. The

allocation of these RAM E blocks will be

detailed in the next subsection. The two

multiplexors in the bottom right corner of

figure 9 are used to pass proper sorted

http://www.ijiemr.org/

Page 44 www.ijiemr.org Volume number:01,Issue number:02

messages to the two sets of path

constructors.

It should be noted that the adder and

subtractor in Figure are not component-wise

vector adder and subtractor. Since nm < q

messages are kept for each vector, it is

possible that for a message in one vector,

there is no message with the same finite

field element in the other vector. Taking this

into account, the addition/subtraction is

carried out in two rounds. Denote the two

input vectors to the adder/subtractor by row

and column vectors[3]. In the first round,

one entry in the row vector is read out in

each clock cycle. If there is an entry in the

column vector with matching finite field

element, then the corresponding LLR is

added/subtracted by that from the row

vector. In addition, a flag is set for the entry

in the column vector. If there is no entry

with matching field element in the column

vector, compensation LLR is used for the

column vector. It has been shown that

setting the compensation LLR to the largest

LLR in the vector does not lead to

noticeable performance loss.

In the second round, one entry is read out

from the column vector at a time. If the

corresponding flag is not set, its LLR is

added up/subtracted by the compensation

LLR of the row vector. The output vector

also needs to be kept sorted according to

increasing LLR. Hence, the

sums/differences from the two rounds are

sent to a parallel sorter, which has nm

comparators, nm registers and nm−1

multiplexors. This parallel sorter can insert a

number into a sorted sequence of length nm

in one clock cycle. As a result, the

addition/subtraction of two vectors can be

completed in 2nm clock cycles, after which

the output vector can be found at the

registers of the parallel sorter.

VII. CONCLUSION

This paper focuses on the design of VLSI

architectures for NB-LDPC decoders. The

complexity of the check node processing is

further reduced in the Min-max algorithm

with slightly lower coding gain.More over,

layered decoding can be adopted to reduce

the memory requirement and increase the

convergence speed of binary LDPC

decoding. Novel forward-backward partial-

parallel layered decoder architecture for

QCNB-LDPC codes based on the Min-max

algorithm is presented. The proposed design

http://www.ijiemr.org/

Page 45 www.ijiemr.org Volume number:01,Issue number:02

can achieve significantly higher efficiency

than prior efforts, especially when the check

node degree is not small. When combined

with layered decoding, the overlapped

scheme also leads to the elimination of the

division and reverse permutation blocks. A

novel check node processing schemes for

both Min-max and EMS NBLDPC decoding

algorithm is also proposed. The path

construction scheme for EMS algorithm is

more complex than that of the Min-max

algorithm. Compared to the forward-

backward check node processing, the

proposed trellis based check node

processing scheme leads to significant

memory and complexity reduction. Inspired

by the proposed check node processing

scheme, the sorted v-to-c messages are

stored in a compressed version, which will

be recovered when needed. As a result,

substantial memory saving can be achieved

for the overall decoder. In addition, efficient

architectures have been designed for the

sorter and path constructor, and the

computation scheduling has been optimized

to further reduce the overall area and latency

REFERENCES

[1] Ali E.Pusane, Pascal 0.Vontobel and

Daniel J.Costello ,”Deriving Good LDPC

Convolutional Codes From LDPC Block

Codes” ,IEEE Trans. IT, vol.57,PP.835-857,

2011.

[2] D. MacKay,”Good error correcting

codes based on very sparse matrices”, IEEE

Trans.IT, vol.23, pp. 399–431,1999.

[3] J. Lin, J. Sha, Z. Wang, and L. Li, “An

efficient vlsi architecture for nonbinary ldpc

decoders” ,IEEE Trans. on Circuits and

Systems-II ,vol. 7, pp. 532-542, 2010.

[4] Lucile Sassatelli and David Declereq,

“Non Binary Hybrid LDPC Codes’”,IEEE

Trans.IT,vol.56,pp.5314-5334, 2010.

[5] Mohammad M. Mansour and Naresh R.

Shanbhag ,”High-Throughput LDPC

Decoders”, IEEE Trans.IT, Vol. 11, pp.976-

996 ,2003.

[6] M. Luby and et. Al, “Improved low-

denstiy parity check codes using irregular

graphs” , IEEE Trans.IT, vol.21, pp. 585–

598,2001.

http://www.ijiemr.org/

Page 46 www.ijiemr.org Volume number:01,Issue number:02

[7] M. Davey and D. J. MacKay “Low

density parity check codes over gf(q)”, IEEE

Commun. Letter ,vol. 2, pp. 165–167, 1998.

[8] Nissim Halabi and Guyeven (2011), “LP

Decoding of Regular LDPC Codes in

Memoryless channels” IEEE

Trans.IT,vol.57,pp.887-897, 2011.

[9] R. M. Tanner, “A recursive aproach to

low complexity codes,” IEEE Trans.on

Information Theory., no. 9, pp. 533–547,

1981.

[10] Sangmin kim ,Gerald E.Sobel and

Hanlo Lee, “A Reduced-Complexity

Architecture For LDPC Layered Decoding

Schemes” IEEE

Trans.VLSI,vol.19,pp.1099-1103, 2011.

AUTHOR 1:-

S.Sahaja completed her B-tech in

Sumathi Reddy Institute of Technology For

Women. in 2014 and completed M-Tech in

Vaagdevi college of Engineering.

AUTHOR 2:-

Mr.B.Ranjith Kumar is working

as Assistant. professor in Dept of ECE,

Vaagdevi College of Engineering.

AUTHOR 3:-

Mr.M.Devadas is working as

Assistant.professor in Dept of ECE,

Vaagdevi College of Engineering.

http://www.ijiemr.org/

