
 

  

  

  

  

  

  

 Vol 14 Issue 05,May 2025  ISSN 2456 – 5083  Page 198  

       

    

  

  

  

Optimized Isolation Forest Based Docker Container Anomaly Monitoring System  

  

Ms. Mohuya Pal   
Department of Computer Engineering  

JSPM’s Rajarshi Shahu College of Engineering  
Pune, India  
mahuapal.edu@gmail.com  

Dr. Prema Sahane  

Department of Computer Engineering  

JSPM’s Rajarshi Shahu College of Engineering  
Pune, India  
pbsahane_comp@jspmrscoe.edu.in  

Abstract— This paper presents an enhanced anomaly 

detection system for Docker containers, leveraging an improved 

version of the Isolation Forest algorithm. Due to the highly 

dynamic and ephemeral nature of containerized environments, 

traditional monitoring approaches often fall short in identifying 

issues such as performance degradation, security breaches, and 

inefficient resource usage. Docker containers are widely adopted 

for deploying scalable applications in isolated environments, but 

their complexity makes consistent and accurate monitoring a 

challenge. To address this, our approach integrates 

hyperparameter tuning and optimized feature selection into the 

Isolation Forest model, significantly improving its ability to 

detect abnormal behavior. We evaluate the system using real-

world Docker container data, and the results demonstrate 

superior performance compared to conventional methods. The 

proposed solution effectively identifies both known and 

previously unseen anomalies in real-time, without relying on 

labeled datasets.  

Keywords— Anomaly monitoring, Docker container, Log 

analysis, Isolation forest.  

I. INTRODUCTION  

With the growing accessibility of cloud computing, more 
companies are building their own data centers to better serve 
their customers' diverse needs. Docker containers have gained 
popularity in this space because of their quick deployment and 
startup times. As virtualization has become a core element of 
modern data centers, containers like Docker are now widely 
used by industry leaders including Amazon, IBM, and Oracle.  

Despite the increasing adoption of container clusters, 
concerns about their security and stability continue to grow. A 
notable example is a major outage in Amazon’s cloud 
services—an event heavily reliant on containerized and 
virtualized infrastructure—that caused widespread disruption 
across hundreds of websites and apps. Such incidents 
underline the critical need for timely and accurate anomaly 
detection in containers to ensure the reliability of cloud 
services.  

Monitoring a multitude of resources in a highly dynamic 
environment presents a major challenge, especially when 
aiming to minimize infrastructure overhead. Rule-based 
anomaly detection methods use preset thresholds for different 
metrics. These systems often assume that each host runs a 
single container and adjust thresholds as new containers are 
added. However, this model becomes impractical as the 
number and variety of containers scale up. Traditional 
statistical methods, which typically rely on univariate data 
assumptions, struggle to handle the complexity of 
highdimensional data and often fail to detect subtle 
anomalies. To address these issues, researchers have 
introduced densitybased techniques such as Local Outlier 
Factor (LOF) and Angle-Based Outlier Detection (ABOD), 
which identify anomalies by analyzing local data density or 
angular variance. However, these methods can become 
computationally expensive for large-scale datasets.  

Tools like Ganglia, Nagios, Akshay, and cAdvisor use 
fixed monitoring intervals to track system behavior. While 
short intervals can quickly catch anomalies, they significantly 
increase system overhead. Longer intervals reduce this 
burden but delay detection. Therefore, it’s vital to adjust 
monitoring intervals dynamically based on the system’s real-
time state.  

Anomalies in containers are often linked to unusual 
resource usage patterns. For instance, excessive CPU usage 
might indicate an infinite loop, while increasing memory 
consumption could signal a memory leak. Monitoring 
resource usage is thus key to early anomaly detection.  

This study proposes an anomaly monitoring system 
tailored for containers, utilizing an optimized Isolation Forest 
algorithm. The system passively collects resource usage 
metrics and calculates anomaly scores while taking into 
account the unique workload characteristics of each container 
application. Resource metrics are weighted based on their 
importance to the container's function—for example, 
I/Ointensive applications would prioritize disk read/write 



  

  

  

  

  

  

  

 Vol 14 Issue 05,May 2025  ISSN 2456 – 5083  Page 199  

  

        

    

rates. This weighted feature approach improves detection 
accuracy.  

When an anomaly score exceeds a predefined threshold, 
the system investigates container logs to identify the root 
cause. It also adapts the monitoring frequency depending on 
the severity of the issue, helping to reduce both response times 
and unnecessary monitoring overhead.  

The most important contributions that this work makes are 
as follows:  

• Developing a system to detect and track anomalies 
in Docker containers; this system will keep an eye on 
multidimensional resource metrics, tweak monitoring 
intervals automatically, and look into what causes them.   

Improved anomaly detection based on container 
application workloads is possible with the help of this article's 
new iteration of the Isolation Forest method, which accounts 
for resource metric weights.  

• Using both simulated and actual AWS settings, we 
will test the system and method for a variety of unique 
circumstances to see how well they handle detection 
accuracy, surveillance latency, and log analysis.  

II. LITERATURE SURVEY  

Docker is a lightweight virtualization technology 
operating as an operation running on the host computer, 
separating its resources via kernel-level namespaces, enabling 
processes in containers and the host to communicate without 
interference. Unlike virtual machines (VMs), which employ 
hardware-layer virtualization, Docker employs operating 
system-level virtualization, resulting in higher performance 
and efficiency [14]. Let R denote the performance efficiency; 
Docker achieves RD > RVM, where RD and RVM represent 
the resource utilization efficiency of Docker and VMs, 
respectively. Docker eliminates hardware emulation and 
additional OS layers required by VMs [15]. Given L as the 
layers of abstraction, Docker achieves LD < LVM, reducing 
computational overhead. Consequently, startup time T is 
minimized, with TD < TVM, typically a few seconds 
compared to several minutes for VMs. Additionally, Docker 
exhibits mobility and scalability, operating across various 
platforms, denoted as P, with PD > PVM These properties 
have led researchers to adopt Docker in diverse domains. For 
example, multi-task PaaS cloud infrastructure was deployed 
using Docker by Tihfon et al. [16], achieving rapid 
application deployment and optimization. Nguyen et al. [18] 
used Docker to streamline MPI clustering for HPC, 
drastically cutting down on setup time. Clusters of 
autonomously expanding networks were refined by Julian et 
al. [19]. , demonstrating the scalability of Docker in large 
production environments.  

The Isolation Forest algorithm (iForest) identifies 
anomalies without requiring a predefined mathematical 
model or training. It partitions data based on random selection 
of features and thresholds, building isolation trees (iTree).  

Consider a dataset with NNN data points,{x1,x2,…,xN}, 
where xi represents individual data. An iTree is constructed 
by selecting n samples (n<N) and recursively dividing data 
using a feature f and threshold p. The process terminates when 
the tree height equals log2(n) or samples cannot be divided 
further.  

The path length h(x)h(x)h(x distance from data point x to the 
root node is a measure of how sparse x is. The discrepancy of 
x in any number of samples may be quantified using anomaly 
scoring, s(x,n):  

  
with γ as Euler's constant. Values of s(x,n) close to 1 

indicate high anomaly probability, while values near 0 suggest 
normalcy.  

Monitoring systems have evolved significantly to address 
handle resources in contexts that use containers. Gmond, 
gmetad, and a website front-end and back are the building 
blocks of Ganglia, an open-source solution for cluster 
monitoring. to collect and visualize data [6]. However, its 
inability to analyze anomalies limits its applicability. Nagios 
[8] extends monitoring capabilities by offering exception 
notifications but relies on static thresholds unsuitable for 
dynamic container scenarios. Let T denote the threshold; 
static T values lead to misclassification in dynamic systems 
where ΔT =0  

Using Docker, Anand et al. [12] suggested a way to 
monitor containers.   

APIs to estimate the standard deviation σ\sigmaσ of 
resource usage. Data storage is conditional upon σ>σth, 
where σth is a predefined threshold. Despite storage 
efficiency, the absence of alarm functionality limits its utility. 
Google’s cAdvisor [13] collects and aggregates container 
metrics but is constrained to single-node environments, lacks 
data storage, and provides only a one-minute sliding window.  

Anomaly detection methods rely on statistical, 
entropybased, distance-based, and density-based approaches. 
Statistical methods [9] construct models assuming a standard 
distribution. For multidimensional metrics, these models 
struggle with accuracy due to noise ϵ\epsilonϵ, where 
ϵ\epsilonϵ disrupts the model. Entropy-based methods [22] 
compare entropy fluctuations over time, identifying 
anomalies when ΔS>δ is entropy change, and δ is a predefined 
threshold. However, these methods are unsuitable for 
dynamic container environments.  



  

  

  

  

  

  

  

 Vol 14 Issue 05,May 2025  ISSN 2456 – 5083  Page 200  

  

        

    

Distance-based methods [23] calculate inter-data distances 
D(xi,xj). Data xix_ixi is anomalous if the number of 
neighbours N(xi)<p, where p is the neighbor threshold. This 
method fails in multi-cluster scenarios, as clusters of 
anomalous data Ca may resemble normal data clusters Cn. 
Methods that rely on density, like the Locally Outlier Score 
(LOF) [10], calculate a score based on density:  

  

High LOF values indicate anomalies, but computational 

overhead limits its scalability for large datasets ∣X∣ 0.  

While these methods exhibit strengths, their limitations 
highlight the need for optimized approaches. Advanced 
systems must integrate scalable algorithms, adaptive 
thresholds, and efficient anomaly scoring to address the 
dynamic and multidimensional nature of containerized 
environments.  

III. METHODOLOGY  

A. Architecture  

Four main components—the The four main components 
of the architecture are the monitoring agent, the monitoring 
data storage, the oddity detection, and the anomaly analysis.   

Monitoring system shown in Figure 1. Every host machine 
has a single monitoring agent that uses a non-invasive 
technique to record container resource use rates. Collecting 
monitoring data from every host machine, the Monitoring 
Data Storage module keeps just the most recent period of data. 
The Anomaly Detection module receives this formatted data 
then for additional handling.   

The Anomaly Detection module searches the acquired data 
for anomalies using an iForest-based evaluation technique. 
The Anomaly Analysis module receives then detected 
aberrant container information. Retrieving the logs of the 
impacted containers from their respective hosts, this module 
examines the logs and finds the root cause of the 
abnormalities.  

  
Fig. 1. System architecture  

B. Monitoring agent  

Several functional modules make up the monitoring agent' 
internal structure, as shown in Figure 2: monitoring data 
collecting, monitoring data processing, container information 
management, monitoring period adjustment, data collecting 
control, log collecting, and transmission.  

  
Fig. 2. The internal design of the monitoring agent  

Keeping an Eye on Data Gathering   

Real-time data collecting from every running container on 
the host machine is handled in this module. Typical 
measurements comprise container ID, timestamp, CPU use, 
memory use, disc I/O rates, and network speed.  

Data Processing for Monitoring   

After the data is collected, this module does two phases. 
First, the data is organized and presented in a way that is 
compatible with databases; this ensures that it captures 



  

  

  

  

  

  

  

 Vol 14 Issue 05,May 2025  ISSN 2456 – 5083  Page 201  

  

        

    

containers ID, date, and resource utilization. Second, it does 
data compilation for mirrored containers that are executing 
the same service.  

Container Information Management    

This module keeps tabs on the current status of container 
using the Docker API. It records events such as containers 
starting or stopping, IDs, details of tasks, and information 
about mirroring. After that, this data is sent to the Data 
Acquisition Control module.  

Monitoring Period Adjustment    

This module uses the Docker API to monitor the 
container's current condition. Events such containers 
beginning or stopping, IDs, task descriptions, and mirroring 
information are recorded. The Data Acquisition Controller 
module then receives this data.  

Data Collection Control  

Acting as the monitoring agent' central control unit, this 
module preserves a queue of containers to be watched over. It 
determines which container to utilize for future data 
collection based on the last collecting duration and the 
selected monitoring period. In order to add or remove vessels 
from the queue, it also integrates information on vessel 
lifetimes from the container-specific Information 
Management database. Cutting container monitoring times in 
half for those identified as potentially aberrant gives the 
module dynamic control over the monitoring sequence. On 
the other hand, containers judged stable deprioritizes in the 
queue and have twice as monitoring periods.  

Log Collection    

This module gathers logs for designated containers under 
direction from the monitoring server, formats them suitably, 
and forwards them for transmission.  

Transmission  

This module carries two different obligations. It runs the 
commands to the pertinent modules and manages command 
reception from the monitoring server. It presents gathered 
monitoring data to the server at the same time.  

Coordinating these modules helps the monitoring agent to 
guarantee effective and flexible resource monitoring, so 
supporting quick anomaly detection and resolution.  

C. Monitoring data storage  

As soon as the surveillance agent has collected data, its 
data storage module is responsible for sending it to the 
anomaly recognition module in the specified format. An free 
to download distributed time-series database designed for 
event and metric data, InfluxDB [26] stores the container 
information. The JSON format is supported by InfluxDB, 

allowing both the surveillance agent and the finding 
anomalies module to communicate with data seamlessly.   

Data about containers is kept in a specific table in 
InfluxDB. This database contains the container ID, as well as 
information on the CPU, memory, disk, network, and the time 
of data collection. The database only keeps the most recent 
hour's worth of monitoring data in order to minimize storage 
overhead.   

There is also a storage controls table that contains the 
following information: container ID, latest update time, and 
the number of rows in the data table. There are three primary 
uses for this table in container information management:   

Creation and Insertion  

Data is entered into the data table as it is received from the 
monitoring agent. The absence of an existing container ID in 
the data table denotes that the data is associated with a newly 
begun container. An entry is generated in the storage control 
table by the database for the new container in this instance. 
For containers where the ID already exists, updating the 
storage control table with the amount of rows and the time of 
modification is done.  

Deletion  

The scanning of the storage control table occurs every ten 
minutes. Assumption of closure occurs when more than ten 
minutes pass without an update to a container's details. 
Consequently, the container’s data is deleted from both the 
data table and the storage control table.  

Data Transmission to Anomaly Detection Module  

Since the anomaly detection module requires a sufficient 
volume of data to build an Isolation Forest model, the 
monitoring data storage module sends data to the anomaly 
detection module when the number of rows in the storage 
control table for a container reaches 100. At this point, the 
corresponding 100 rows of data from the container’s data 
table are transmitted in JSON format to the anomaly detection 
module for processing.This structured approach ensures 
efficient data management, minimal storage use, and timely 
data transmission to support anomaly detection.  

D. Anomaly detection  

a. Data cleaning  

Data loss, repetition, or manipulation during transfer and 
retention is a real possibility with container data due to its 
massive volume. Eliminating duplicate entries and dealing 
with missing data is a necessary first step before building an 
isolation forest. To preserve the forest's structure, unnecessary 
data must be removed. When a greater proportion of lines are 
missing or when five or more points in row are gone, it 
becomes troublesome due to missing data. In the event of a 



  

  

  

  

  

  

  

 Vol 14 Issue 05,May 2025  ISSN 2456 – 5083  Page 202  

  

        

    

catastrophic data loss, the anomaly detection method will not 
include the impacted period.  

b. Optimization of Isolation Forest Algorithm 

Introduction and Resource Weight Calculation:   

The classic iForest algorithm struggles with container 
monitoring due to equal weighting of resource indicators 
(CPU, memory, disk, and network speed). Containers with 
different resource dependencies (e.g., CPU-intensive or 
IOintensive) may be inaccurately monitored using the same 
standard. This work presents an optimization strategy to 
enhance accuracy. The method entails assigning weights to 
each resource indicator, which increases the likelihood of 
selecting relevant indicators for anomaly detection. In order 
to maximize monitoring, a self-learning method determines 
bias parameters (M) for every resource while the container is 
in use. Formula (3) shows the normal container consumption 
for each resource and how the bias parameters (M) are 
derived. This leads to the introduction of a self-learning 
mechanism for optimizing resource bias.  

  

With a starting value of 1, W₀ denotes the resource metric's 
initial weight. At time i, Ni represents the rate of resource 
utilization, and ε stands for the resource threshold. The value 
of p represents the frequency of the resource's measurement. 
This function's value is 1 when x is greater than 0, and 0 
otherwise. The resource's weight is set to zero if its value is 
always zero, which indicates that the container does not use 
that resource. The bias toward that resource in containers 
increases as the M value rises.  

 Every resource metric is given a weight by the bias parameter 
M. The starting weight for all resources is 1. Every ten 
minutes, the weight is changed from the default to M 
dependent on the data usage rate for that period. This feature 
value selection process concludes with a weighted random 
selection technique. Algorithm 1 displays the algorithm's 
pseudocode.  

Three, two, and four are the resource weights. Mall is the 
sum of all weights. As a feature to partition the data collection, 
the resource's index number is last returned as i. Data from 0 
to Mall is represented by R.  

abnormality values for multidimensional resource metrics are 
computed using the iForest algorithm, however the 
underlying measure that generates the abnormality cannot be 
identified. It could be difficult to determine the precise source 
of a spike in CPU or memory utilization because the 
anomalous value might be comparable. This paper offers a 
solution by outlining a procedure to identify the unusual 
resource metric.  

  

  

      The feature that was used to divide the data at that point 
is regarded the isolation feature for that data when 
constructing an isolation tree. This feature indicates which 
feature is responsible for isolating the data.  

 Each data point is assigned an isolation feature group, 
where each feature's usage count is tracked across the 
isolation trees. The more frequently a resource metric appears 
in the isolation feature group, the more likely it is the cause 
of the anomaly. This method is based on the premise that data 
with feature values that significantly differ from others are 
more likely to be isolated, thus the isolation feature is often 
the one with the highest anomaly value.  

When a container is deemed anomalous, its isolation 
feature group is compared with that of normal data. The ratio 
of corresponding values in the groups is calculated, and a 
higher ratio indicates a higher degree of anomaly for the 
metric.  

A number of iTrees, or random binary trees, come together 
to form an isolation forest. Every node can be either a parent 
node with two children or a leaf node, the latter of which 
represents data in isolation.  

 Fig. 3. Isolation forest construction process  

In constructing an iTree, the following steps are followed: 
First, the bias for each resource is calculated, adjusting the 
feature weights accordingly. Then, a feature is randomly 
selected and divided based on its value. This process 
continues recursively until either the data set is reduced to a 
single data point or the tree reaches a predefined height.  

Just like random forests, isolation forests employ separate 
data segments to build each tree. Using particular formulas, 
we find the anomalous value in order to get an average of the 
tree heights for all the observations. In order to determine the 
unusual resource measure, we track the frequency of each 
feature's isolation use.  



  

  

  

  

  

  

  

 Vol 14 Issue 05,May 2025  ISSN 2456 – 5083  Page 203  

  

        

    

E. Monitoring period adjustment  

To enhance monitoring timeliness, the monitoring period can 
be shortened to gather more data, allowing earlier detection 
of changes in anomaly values. To establish the probability of 
an anomaly, one sets an anomaly sensitivity threshold, abc, 
has the following relationship to the anomaly identification 
threshold, d:  

  

The default value for the normal anomaly, p, is 0.5. We will 
closely watch the container if the average anomaly value is 
found to be between ff and dd, which indicates a possible 
concern. The intensive type message is sent by the monitoring 
server with the container id 100. The time is cut in half for 
close observation. A message of type "extensive" is sent 
whenever the anomalous value falls below ff, signaling that 
the monitoring period should be reset to its initial value.  

F. Anomaly Analysis  

  

After the detection module finds an unusual container, the 
problem analysis module looks through its records to find out 
why. Its two primary parts are the log data collecting module 
of the monitoring agent and the system that utilizes that data.  

A. Log Preprocessing  

The first stage before analysis is log preprocessing, which 
aims to reduce storage and analytical cost by removing useful 
log events.  

 Container system logs are saved in JSON format, often 
containing unnecessary escape sequences (e.g., u0008), 
which increase log volume. These sequences are filtered out 
during preprocessing. Additionally, irrelevant application 
logs, like web access logs, are removed as they don't 
contribute to anomaly analysis. This is done using regular 
expressions in the Logstash configuration file [27] to filter 
and drop unnecessary log content, with the remaining data 
stored in the database.  

B. Log Analysis  

The log research module can correctly update the database 
by comparing pre-processed record incidents with a rule 
database and identifying similar itemsets. Both "normal" 
rules, used for typical container operations, and "exception" 
rules, based on empirical and historical data, make up the rule 
database.  

The analysis process follows these steps: 1) Match logs with 
empirical exception rules; if successful, trigger an alarm. If 
not, use the Apriori algorithm to mine frequent itemsets. 2) 
Match mined itemsets with normal or historical exception 

rules and trigger alarms as needed. 3) If no match is found, 
the administrator adds the itemsets to the rule databases [28].  

IV. RESULTS ANALYSIS  

Experiments were carried out in both simulated and 
realworld cloud environments. In the simulated setup, one 
machine hosted the monitoring server, while another ran the 
monitoring agent and Docker containers. The real-world 
environment utilized Amazon EC2 instances with two 
configurations: t3.medium, offering two CPU cores and 4 GB 
of RAM, and t3.small, a free-tier instance with one CPU core 
and 2 GB of RAM. Both setups used Ubuntu 16.04 and 
Docker 18.03.1-ce. All monitoring components were 
deployed within the cloud infrastructure.  

Two representative applications were chosen to test the 
monitoring system: Memcached and Web Search from 
CloudSuite. Memcached is a distributed memory object 
caching system aimed at reducing database load in dynamic 
web applications. The Web Search workload, built on Apache 
Solr, uses a 12 GB search index created via Apache Nutch. To 
simulate real-world demand, Mutilate was used to generate 
load on Memcached, while Faban was used for Web Search.  

Since there is no standardized benchmark for 
containerlevel anomalies, the study defined four common 
fault types: CPU overload, memory leak, disk I/O overload, 
and network congestion. CPU anomalies were introduced by 
injecting a stress loop that used 100% of the processor. 
Memory leaks were created by allocating heap memory 
without releasing it. Disk faults were simulated using FIO to 
generate excess read/write operations, and network 
congestion was simulated by limiting bandwidth with 
wondershaper.  

To assess detection performance, both the detection rate 
and false alarm rate were measured. The optimized isolation 
forest (iForest) algorithm demonstrated higher accuracy and 
lower false alarms compared to the original iForest and the 
Local Outlier Factor (LOF) algorithm. Especially for 
Memcached, where resource usage is more stable, optimized 
iForest provided better results. In contrast, Web Search 
exhibited higher variability under normal conditions, which 
led to more false positives, particularly for LOF.  

In practical scenarios, malicious processes might not 
consume all CPU resources but still degrade performance. For 
instance, a simulated web attack using siege consumed 60– 
80% of CPU. In such cases, optimized iForest consistently 
outperformed the original, which struggled to identify 
anomalies at lower resource utilization. Although the original 
iForest showed no false alarms, its detection capabilities were 
inadequate under subtle attack conditions. The optimized 
version maintained strong detection with a tolerable increase 
in false alarms, especially in single-core environments where 
resource fluctuations were more pronounced.  



  

  

  

  

  

  

  

 Vol 14 Issue 05,May 2025  ISSN 2456 – 5083  Page 204  

  

        

    

An example anomaly detection case was conducted on the 
Memcached container. Three events were introduced: CPU 
overuse, network congestion, and a legitimate workload 
increase. The optimized iForest successfully flagged the first 
two as anomalies due to significant deviations in monitored 
metrics. However, the workload increase, which did not 
disrupt normal behavior, was correctly not flagged. This 
demonstrates the system’s ability to differentiate between 
normal fluctuations and real faults.  

After detecting an anomaly, the system identifies the most 
likely affected metric by comparing the frequency of selected 
features during anomalous versus normal periods. Metrics 
with notably higher isolation feature ratios are deemed the 
source of the issue, enabling accurate fault localization.  

To determine an appropriate anomaly detection threshold, 
multiple tests with varying thresholds were performed. As the 
threshold increased, both detection and false alarm rates 
declined. The optimal setting balances sensitivity and 
accuracy.  

The number of isolation trees in iForest significantly 
impacts performance. Detection improved and false alarms 
decreased as the number of trees increased, but after reaching 
100 trees, additional gains diminished while computation 
time rose. Thus, 100 trees was selected as the optimal 
configuration.  

Monitoring delay—the time between fault injection and 
detection—was evaluated under two conditions: fixed and 
adaptive monitoring intervals. Using a fixed 4-second interval 
led to delays between 40 and 55 seconds, due to the time 
required to collect sufficient data to rebuild the model. In 
contrast, a dynamically adjusted monitoring interval reduced 
detection times by an average of 13.5%. When anomalies 
were detected, the monitoring frequency increased 
temporarily to capture more granular data, accelerating 
detection. Once the container returned to normal, the interval 
reset to its original value.  

The system includes a log analysis component for 
postanomaly investigation. Two attack scenarios were tested. 
In the first, a disk attack simulated by continuous file 
operations caused abnormal disk usage. After detection, 
system logs were filtered, reducing their size significantly and 
revealing repeated file creation and deletion. In the second 
case, a network attack was simulated by flooding a website 
hosted in a container with GET requests. Again, the logs were 
trimmed and analyzed, revealing over 100 requests from a 
single IP address, identifying it as the anomaly source.  

 

Fig. 4. Scatter Plot of src_bytes vs dst_bytes  

Figure 4 shows that as scatter plot displays the relationship 
between source and destination bytes in network traffic data. 
Most points cluster around low dst_bytes values, with a few 
high outliers. The dense vertical line suggests frequent small 
responses to larger incoming data — a common pattern in 
anomaly detection for network monitoring.  

  



  

  

  

  

  

  

  

 Vol 14 Issue 05,May 2025  ISSN 2456 – 5083  Page 205  

  

        

    

Fig. 5. Scatter Plot of src_bytes vs dst_bytes  

 Figure 5 shows that as heatmap highlights the correlation of 
src_bytes with other features. All correlations are very weak, 
with values near zero, indicating low linear dependency. Such 
low correlation implies each feature adds unique information, 
which is beneficial in detecting anomalies across multiple 
dimensions.  

 

Fig. 6. Isolation Forest Model Initialization  

 Figure 6 shows that as code calculates the estimated 
contamination — the proportion of suspected outliers — 
based on src_bytes. The model is trained using the Isolation 
Forest algorithm with 50 estimators. It helps in identifying 
anomalous network records by isolating outliers in the 
dataset.  

  
Fig. 7. Model Performance Metrics  

 Figure 7 shows that as model achieves high accuracy (99%), 
but performs poorly on the minority (anomalous) class, with 
an F1-score of just 0.02. This indicates class imbalance — the 
model identifies normal traffic well but struggles to detect 
anomalies, highlighting the need for improved detection 
methods or balanced data.  

  
Fig. 8. CPU Usage Anomaly Detection  

 Figure 8 shows that as plot visualizes CPU usage over time, 
with normal behavior (inliers) marked in blue and anomalies 
in red. While most data points show stable usage, the few red 
points signal sudden spikes that are flagged as anomalous, 
indicating potential system irregularities.  

  
Fig. 9. Distribution of Anomaly Scores from Isolation Forest  

 Figure 9 shows that as the kernel density estimate (KDE) of 
anomaly scores generated by the Isolation Forest model. The 
density curve illustrates how frequently certain scores appear 
in the dataset. The vertical dashed line represents the 
estimated contamination threshold — the proportion of data 
points expected to be anomalous. Values to the right of this 
threshold are considered potential anomalies. This 
visualization helps in understanding the separation between 
normal and anomalous data points based on their anomaly 
scores.  

V. CONCLUSION  

 This paper presents an online anomaly detection approach for 
containers that leverages an enhanced Isolation Forest 
algorithm to analyze multidimensional resource data. By 
assigning tailored weights to different resource metrics and 



  

  

  

  

  

  

  

 Vol 14 Issue 05,May 2025  ISSN 2456 – 5083  Page 206  

  

        

    

adjusting feature selection to reflect the specific behavior of 
containerized applications, the method improves detection 
precision. The system also adapts the monitoring interval 
based on the severity of anomalies, helping to minimize 
response delays. Furthermore, it incorporates log analysis to 
pinpoint the underlying causes of unusual behavior. Tests 
conducted on both virtual and physical cloud environments 
confirm that the proposed method effectively detects 
abnormal container activity without degrading system 
performance.  

REFERENCES  

  
[1] A. Anwar, M. Mohamed, V. Tarasov, M. Littley, L. Rup- precht, Y. Cheng, 

N. Zhao, D. Skourtis, A. S. Warke, H. Ludwig, D. Hildebrand, and A. R. Butt, 

“Improving docker registry design based on production workload analysis,” 

in 16th USENIX Conference on File and Storage Technologies (FAST 18). 

Oakland, CA: USENIX Associa- tion, 2018, pp. 265–278. [2]  “Amazons 

container strategy examined,” https://www. 

informationweek.com/cloud/infrastructure- as- a- service /amazons- 

container- strategy- examined/a/d- id/1317515.  

[3] “IBM containers on bluemix,” https://www.ibm.com/bl 

ogs/bluemix/2015/06/ibm- containers- on- bluemix/.  

[4] “Munz docker occs,” http://www.oracle.com/technetwo 

rk/articles/cloudcomp/munz- docker- occs- 3585210.html.   

[5] “Amazons cloud service partial outage affects certain websites,” 

http://www.dailymail.co.uk/sciencetech/arti cle- 4268850/Amazons- 

cloud- service- partial- outage- affects- certain- websites.html. [6] M. 

L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed 

monitoring system: design, implementation, and experience,” Parallel 

Computing, vol. 30, no. 7, pp. 817– 840, 2004.  

[7] “Introduction to Zabbix,” http://tim.kehres.com/.  

[8] “Nagios: The industry standard in it infrastructure monitoring,” 

https://hops://www.n- agios.org/.  

[9] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detec- tion: A 

survey,” ACM Computing Surveys, vol. 41, no. 3, pp.1–58, 2009.  

[10] M. M. Breunig, H. P. Kriegel, and R. T. Ng, “LOF: iden-tifying density-

based local outliers,” in ACM SIGMOD International Conference on 

Management of Data, 2000, pp. 93–104.  

[11] H. P. Kriegel, M. S. Hubert, and A. Zimek, “Angle- based outlier 

detection in high-dimensional data,” in ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, 2008, pp. 444– 

452.  

[12] S. A. K, J. A. K, and K. A, “Resource monitoring of docker containers,” 

International Journal of Advance Engineering and Research 

Development, vol. 3, no. 2, pp. 146–149, 2016.  

[13] “Google.cAdvisor,” https://github.com/google/cadvis or. [14] N. Naik, 

“Building a virtual system of systems using docker swarm in multiple 

clouds,” in IEEE International Symposium on Systems Engineering, 

2016, pp. 1–3.  

[15] S. Mcdaniel, S. Herbein, and M. Taufer, “A two-tiered approach to I/O 

quality of service in docker containers,” IEEE/ACM Transactions on 

Networking, vol. 6, no. 1, pp. 42– 55, 2015.  

[16] G. M. Tihfon, J. Kim, and K. J. Kim, A New Virtualized Environment 

for Application Deployment Based on Docker and AWS. Springer 

Singapore, 2016.  

[17] R. Liu, R. Liu, R. Liu, A. C. Arpaci-Dusseau, and R. H. ArpaciDusseau, 

“Slacker: fast distribution with lazy dock- er containers,” in Usenix 

Conference on File and Storage Technologies, 2016, pp. 181– 195.  

[18] N. Nguyen and D. Bein, “Distributed MPI cluster with docker swarm 

mode,” in Computing and Communication Workshop and Conference, 

2017, pp. 1–7.  

[19] S. Julian, M. Shuey, and S. Cook, “Containers in research: Initial 

experiences with lightweight infrastructure,” in XSEDE16 Conference 

on Diversity, Big Data, and Science at Scale, 2016, p. 25.  

[20] F. T. Liu, M. T. Kai, and Z. H. Zhou, “Isolation forest,” in Eighth IEEE 

International Conference on Data Mining, 2009, pp. 413–422.  

[21] N. L. D. Khoa and S. Chawla, Robust Outlier Detection Using 

Commute Time and Eigenspace Embedding. Springer Berlin  
Heidelberg, 2010.  

[22] M. Jiang, M. A. Munawar, T. Reidemeister, and P. A. S. Ward, 

“Efficient fault detection and diagnosis in complex software systems 

with information-theoretic monitoring,” IEEE Transactions on 

Dependable and Secure Computing, vol. 8, no. 4, pp. 510–522, 2011. 

[23] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algo- rithms 

for mining outliers from large data sets,” in ACM SIGMOD 

International Conference on Management of Data, 2000, pp. 427–438.  

[24] F. Angiulli, S. Basta, and C. Pizzuti, “Distance-based de- tection and  

  
prediction of outliers,” IEEE Transactions on Knowledge and Data 

Engineering, pp. 145–160, 2006.  


