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Terminal Area Traffic Situation Prediction Using a Transformer-Based Model with 

Multi-Head Self-Attention 

 

Abstract— The constant movement of vehicles and 

unpredictable traffic patterns present significant challenges at 

terminal areas like airports, seaports, and logistics hubs. 

Managing these challenges is becoming increasingly complex, 

making it essential to have precise and timely traffic forecasts to 

reduce congestion, enhance safety, and optimize resource use. 

This research focuses on developing a Multi-Head Attention 

Transformer model for terminal traffic forecasting. By 

leveraging self-attention, the model can capture intricate 

relationships between different traffic elements over time, 

accurately predicting both short-term fluctuations and long-

term trends. It employs a multi-head approach to process traffic 

data from multiple angles, uncovering key connections across 

various timeframes. Compared to traditional methods like 

ARIMA, LSTM, and GRU, the proposed model significantly 

improves prediction accuracy in trials using traffic datasets. 

Due to its scalability and adaptability, the model holds great 

potential for real-time traffic management across different 

terminal locations, although it does require substantial data and 

computational resources to operate effectively. 

Keywords— Traffic situation prediction, transformer, 

temporal convolutional network, Intelligent transportation system, 

air transportation. 

I. INTRODUCTION 

Traditional air traffic management (ATM) methods have 
struggled to keep up with the rapid growth of the airport 
transportation industry. In recent years, the field of Intelligent 
Transportation Systems (ITS) has gained increasing attention, 
aiming to improve navigation efficiency and enhance safety 
[1]. The integration of advanced artificial intelligence 
technologies is pushing the evolution of ATM toward greater 
intelligence and efficiency. 

Smart ATM focuses on understanding the current terminal 
traffic situation. By optimizing aircraft operations and 
ensuring safety within terminal areas, situational awareness 
plays a crucial role. This awareness consists of two main 
aspects: accurately identifying the current situation and 
predicting future developments [2]. Researchers have 

explored air traffic conditions within terminal areas and routes 
using approaches like complex network theory [3, 4], [5], [6]. 
These studies primarily aim to analyze and understand traffic 
dynamics by examining air traffic patterns in conjunction with 
related theories. 

A novel approach to airspace complexity prediction was 
developed by Du et al. [7], who introduced a spatio-temporal 
hybrid deep learning model. This model effectively captured 
the geographic correlations and temporal dependencies of 
airspace complexity data. In another study, Sui et al. proposed 
a spatiotemporal graph convolutional network [8], which was 
designed to predict traffic conditions and examine the 
correlations between changes in airspace operational states. 
However, despite the focus of these studies on forecasting air 
traffic conditions in the broader airspace, there is a lack of in-
depth research into predicting operational scenarios 
specifically within the terminal area, the busiest part of the air 
traffic system. 

Recently, transformer-based deep learning models have 
become a key area of research for time-series forecasting tasks 
[9], [10]. Given that traffic in the terminal area follows a time-
series pattern, this study proposes a model called ConvTrans-
TCN for predicting terminal traffic conditions. The model is 
divided into three main parts: part one encodes the data, part 
two synthesizes it, and part three computes situational values. 
The model generates a final prediction of the traffic situation 
by processing multidimensional scenario data across multiple 
computation layers. The accuracy of these predictions could 
aid ATM decision-making, improving traffic management 
and policy implementation. 

II. LITERATURE SURVEY 

 

Time- series information Xt∈R^(N×D), where N is the 

number of nodes and D is the number of scenario 
characteristics at time step t, is used for traffic situation 
prediction [8]. The following equation [26] expresses the 
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mapping function 𝑓, which allows one to forecast future 
circumstances by examining past scenario data. 

  

The attention mechanism is widely used in various 
domains such as natural language processing (NLP), image 
recognition, protein identification, and recommendation 
systems. These methods are effective for understanding the 
relationships between variables and target objectives [11], 
[12]. One specific attention technique, called self-attention, 
focuses on modeling many-to-many relationships. By 
uncovering hidden correlations among features, it can detect 
intricate patterns [13]. Studies suggest that combining self-
attention with different network structures can enhance 
predictions of traffic flow. For instance, Fang et al. [14] 
applied attention mechanisms to overcome the limitations of 
LSTM models, which struggle to capture long-term 
dependencies in traffic flow data, resulting in better short-term 
predictions. Despite these advances, many existing 
approaches still fail to address both short- and long-term 
forecasting tasks adequately. To tackle this, the Long Short-
Term Orient Graph Convolutional Network [15] was 
developed, merging attention mechanisms with graph neural 
networks to better capture complex spatial relationships. 
Additionally, Kong et al. [16] introduced a graph-based 
talking-heads attention layer, which efficiently models spatial 
dependencies. By leveraging the shared patterns between 
terminal area traffic data and traffic flow data, multi-head self-
attention is used to extract meaningful features and reveal 
complex patterns. 

Transformers have become a cornerstone in NLP and 
visual tasks, with attention mechanisms being at their core 
[17]. Unlike RNNs, transformers excel in processing long 
sequences more efficiently by utilizing parallelization. Their 
powerful sequence modeling capabilities have made 
transformers popular in traffic prediction tasks. Researchers 
are continually enhancing transformer architectures by 
incorporating diverse network components to boost 
performance. Examples of such architectures include GMAN 
[18] and NAST [19], which combine the transformer’s 
encoder-decoder framework with neural networks to capture 
dependencies more effectively. However, current methods 
still face limitations, such as restricted input sequence lengths 
and inadequate modeling of local data features. This study 
proposes a model that integrates a temporal convolutional 
network [20] with transformers and introduces a self-attention 
module based on causal convolution. This combination results 
in improved forecasting performance for terminal area traffic 
conditions. 

III. METHODOLOGY 

A. Transformer 

In 2017, Google introduced the Transformer model to 
address the limitations of recurrent neural networks (RNNs) 
in capturing long-range dependencies within extended 
sequences. The Transformer gained significant attention for 
its exceptional performance in machine translation tasks. 

The core components of the Transformer architecture are 
the Encoder and Decoder, each consisting of six blocks. The 
Encoder is made up of two primary layers: the self-attention 
layer and the feedforward neural network layer. These layers 
process and encode the input sequences. On the other hand, 
while the Decoder’s Attention layer is structurally similar to 
the Encoder, it also incorporates a Masking mechanism. This 
Mask ensures that during the prediction of each token, future 
tokens remain hidden, allowing the model to generate outputs 
in a sequential manner without peeking at the subsequent 
tokens. 

As part of this study, the suggested prediction model 
makes use of the Transformer's Encoder component. 
Consequently, the two layers that are crucial to the Encoder's 
operation—the Self-Attention and the Feedforward Brain 
Network—are the ones that will be discussed here. 

1. Multi head and self attention mechanism 

Involving the following actions, self-attention is among 
the most common attention mechanisms: At the outset, the 

query grid Q∈RT×Dq, the key of the matrix K∈RT×Dk, 

and the resulting matrix V∈RT×Dv are all created by 

linearly transforming the input matrix X∈RT×Dx. Next, an 

attention-scoring function is used to calculate the attention 

matrix MA∈RT×T [26]. The attention balance matrix WA

∈RT×T is generated by normalizing the result with the 

softmax function. Finally, the value matrix and the weight for 
attention matrix are multiplied by each other to yield the 

output H∈RT×Dv. The following equations show how the 

attention-scoring function uses the scaled dot-product method. 
where [26]: 

 

The matrices Wq, Wk and Wv represent parameter 
matrices used for linear transformations. The function 
softmax(·) normalizes each row vector to ensure the sum 
equals one. A query vector's dimensionality (Dk) in the 
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queries matrix K is used to express the scaled dot-product 
function through Equation (2). To deal with the problem of 
high dimensionality and big numerator variation, the 
denominator is the cubic root of Dk.. This adjustment prevents 
the gradient from becoming too small, which would otherwise 
make training the model more challenging. 

The Multi-Head Self-Attention Mechanism enhances the 
model's capability to extract diverse feature information from 
various positions by combining the outputs of multiple 
attention calculations through a linear transformation. 

 

 

Fig. 1. The calculation process of the multi-head self-attention mechanism. 

  

The computation involves projecting the query, key, and value 
vectors (Q, K and V) into multiple matrices using distinct 
linear projection matrices. Each set of Q, K and V matrices 
undergoes the attention calculation independently. The results 
from all attention calculations are concatenated and linearly 
transformed with the parameter matrix W0 to produce the final 
output, as illustrated in Figure. 1. 

 If there are “ h ”  projection spaces, the multi-head self-
attention mechanism is calculated as follows: 

 

the calculation of each head component is done in 
accordance with point (6). 

2. Position by position and feed forward networks 

The feed forward neural network component consists of 
two fully connected layers with a ReLU activation function 
applied between them. This component is designed to 
integrate and synthesize all the encoded information, as 
expressed in: 

 

where the weight matrices are W1 and W2. Bias exists in 
b1 and b2. The input is x. 

3. Enhanced transformer model 

Terminal traffic situation data, being time-series in nature, 
requires accurate modeling of both long-term and short-term 
patterns while handling outliers caused by emergency data. 
Zhou et al. [22] addressed this by proposing a causal 
convolutional based self attention module, which improves 
local feature extraction in sequence data. Unlike traditional 
multi-head self-attention modules that rely solely on linear 
projections of individual time points, this module utilizes a 
Conv1D layer to generate the query and key matrices, 
effectively capturing local dependencies and mitigating the 
impact of outliers. 

 

 

An essential The terminal transport structure forecasting 
system includes the Conv1D layer, which employs causal 
padding to guarantee consistent sequence length during 
encoding and avoid future information leaks. To further 
improve prediction accuracy, it employs a mask to convert the 
attention-scoring matrix to a smaller triangular matrix. The 
structure and operations of this module, including causal 
convolution and masking, are detailed in Figures 2 and 3. 

 

Fig. 2. Causal convolution 

B. Information fusion module based on tcn 

An input data sequence with proportions matching the input 

is encoded into features by the causal convolutional self-

attention module in order to forecast terminal-area traffic 

circumstances. The TCN is used for data fusion and ultimate 

prediction, whereas this Transformer-adapted module acts as 

the feature extractor [23]. 

To maintain temporal directionality and avoid data leakage, 

the TCN design stacks 1D convolutional layers and employs 

causal convolutions. 
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Fig. 3. Multi head causal convolutional self attention 

It uses Residual Connections and Dilated Causal 
Convolution kernels [24] to improve performance while 
expanding the receptive field without using very deep 
networks. TCN provides enough capacity for traffic prediction 
while also delivering simplicity by successfully capturing 
both short-term and long-term interdependence in time 
sequences. Below is a summary of the calculation details for 
Residual Connections and Dilated Causal Convolution[26]. 

1. Dilated causal convolution 

The model's receptive field can be exponentially expanded 
with dilated causal convolution [26]. 

 

The convolution is calculated with the following 
parameters: d is the dilation rate, k is the kernel size, and s − 
d · i represents the matching position in the input sequence, 

given an input X ∈  Rn and a one-dimensional causality 

dilated convolution kernel f ∈  Rk. As shown by[26], the 

dilation rate d usually grows as the network layer i does: 

 

This exponential growth of the dilation rate accelerates the 
expansion of the receptive field compared to adjusting the 
kernel size, ensuring that higher-level convolution kernels can 
capture all relevant inputs in the sequence. As a result, it 
enhances information fusion and effectively models long-term 
dependencies, as illustrated in Fig. 4. 

 

Fig. 4. Dilated causal convolution. 

 

2. Residual connection 

The first branch, the original network branch, applies a 
function F to the input; the second branch, the residual connect 
branch, takes the input and adds it to the network's output 
immediately [26]. Here is the final output: 

 

Deeper networks can adjust to data distribution, maintain 
consistent performance, and avoid problems like gradient 
vanishing with the aid of this structure, which allows multi-
layer networks to learn identity mappings easily rather than 
complicated transformations. The input is adjusted using a 1D 
convolution with a 1 kernel size to ensure that the input and 
outputs tensor shapes are identical [26]. 

C. ConvTrans-TCN-based situation prediction model 

With the introduction of the ConvTrans-TCN model, 
neural network traffic scenario prediction becomes more 
accurate. It has three parts: extracting features and encoding 
data, fusing data, and calculating scenario prediction values 
[26]. A causal convolutional self-attention module encodes 
past traffic data in the feature extraction component. 

X=[x1;x2;… ;xT]X = [x_1; x_2; \dots; x_T] as 
follows[26]: 

𝑀𝐻 = 𝐶𝑜𝑛𝑣𝑆𝐴(𝑋)                          (15) 
 

Next, the encoded features are processed using two layers 
of Fully Connected Neural Networks (FNN) with ReLU 
activation: 

 

A residual connection is applied with layer normalization: 
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The information fusion part employs the Temporal 
Convolutional Network (TCN) architecture, which uses 
dilated convolution for extracting features and fusion in the 
time dimension. The processing involves: 

 

Then, a dilated convolution layer with weight 
normalization and dropout is applied: 

 

The final situation prediction value is obtained from the 
last vector in the sequence: 

 

The model employs the mean squared error (MSE) loss 
function: 

 

The ConvTrans-TCN model optimizes prediction 
accuracy with techniques like residual connections, 
normalization, and regularization, ensuring fast convergence 
and superior generalization. 

IV. EXPERIMENTS 

This section first evaluates the prediction model’s 
feasibility, then tests the impact of information encoding and 
situation data causality. It also compares the proposed model 
with common prediction methods to demonstrate its 
superiority. 

A. Preparation transformer 

This study uses terminal area traffic data from Tianjin 
Binhai International Airport (ZBTJ), collected between June 
3–16, 2019 [1]. ZBTJ, a busy dual-runway airport, operates at 
full capacity starting in June. Each data sample spans 10 
minutes and includes 13 features: 12 for traffic conditions and 
one expert-labeled category (smooth, normal, congested, or 
standstill). Labels were provided by experienced air traffic 
controllers and aviation researchers. 

Data was normalized and split into training (70%), 
validation (10%), and test (20%) sets. Training data was 
further augmented via interpolation. A 10-time-step sliding 
window was applied to create multistep sequences for input, 
with the next time step's situation level as the target output. 

The model includes a causal convolutional encoder with 
kernel size 3 and 28 filters, and a 4-head multi-head attention 
module [2]. Its temporal convolutional network (TCN) uses 
six 1D dilated causal convolutional layers (kernel size 2, 64 
filters), with dilation rates of 1, 2, 4, 8, 16, and 32. 

Model training employed the Adam optimizer with 
parameters α=0.001, β1=0.9, β2=0.999, across 500 epochs 
and a batch size of 32. 

The model addresses a regression task, outputting 
quantitative traffic values. Prediction accuracy is measured 
using Root Mean Square Error (RMSE) and Mean Absolute 
Error (MAE), as defined in Equations (22) and (23) [4]. 
RMSE reflects prediction variance, while MAE captures 
average deviation lower values indicate better performance. 

 

B. Predictability Analysis of Terminal Area Traffic 

Short sequences lack sufficient information, leading to 
high uncertainty and limited predictive value. Conversely, 
longer sequences increase computational load. Thus, an 
optimal sequence length must balance informational content 
and processing efficiency. Using the entropy estimation 
approach by Liu et al. [26], both the upper and lower bounds 
of traffic predictability were assessed. 

 

Fig. 5. Relationship between Sequence Length and Entropy. 

Figure 5 shows that as sequence length increases, both 
actual and information entropy stabilize. For sequences under 
205, actual entropy is higher due to insufficient data, while 
information entropy remains stable (~1), indicating consistent 
lower-bound predictability. When the sequence length 
exceeds 2000, actual entropy levels off, reaching 0.08 at a 
length of 3280, suggesting stabilized pattern information. 
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Fig. 6. Relationship between sequence length and traffic situation 

predictability. 

Figure 6 illustrates that the predictability bounds follow 
the same trend as entropy. Above a length of 2000, the upper 
bound plateaus, reaching 0.9825 at 3280, while the lower 
bound remains steady at 0.7763. These values confirm the 
dataset’s reliability for traffic situation prediction and offer a 
theoretical baseline for comparing predictive models [26]. 

C. Effects of different parameters to the proposed model 

This section analyzes the proposed model architecture 
using three variants: TCN, Trans-TCN, and ConvTrans-TCN. 
The focus is on validating the information encoding 
mechanism and exploring the dataset's causal characteristics. 

The ConvTrans-TCN model achieves the highest 
prediction accuracy, with lower error metrics than both TCN 
and Trans-TCN. The improvements seen in Trans-TCN 
highlight the benefits of incorporating multi-head self-
attention before the TCN layer. ConvTrans-TCN builds on 
this by integrating causal convolution, which enhances the 
model’s ability to learn both short- and long-term patterns 
more effectively, resulting in more stable and accurate 
forecasts. 

Comparative analysis using causal and same padding 
reveals that causal padding leads to better performance. This 
confirms that the dataset has inherent temporal causality, and 
causal convolution helps preserve sequence integrity by 
preventing future data leakage. It enhances the model’s ability 
to learn time-based dependencies and traffic evolution trends. 

Testing various configurations shows that using 4 
attention heads and 4 encoder-decoder layers delivers the best 
performance. Adding more layers degrades accuracy, and 
increasing attention heads beyond this point offers no clear 
gains. 

Compared to LSTM, GA-GMNN, and BP models, 
ConvTrans-TCN delivers the most accurate predictions. It 
significantly reduces prediction errors and more closely 
follows actual values across all time periods. While LSTM 
and GA-GMNN generally fit well, they struggle with long-
term dependencies. GA-GMNN performs better than LSTM, 
reflecting the strength of attention mechanisms. In contrast, 
BP performs the worst due to its limited ability to model 
temporal and spatial relationships and tendency to overfit. 

The combination of causal convolution and self-attention 
allows ConvTrans-TCN to efficiently extract critical local 
features and long-range dependencies, making it particularly 
suited for time sequence prediction. 

Accurate traffic prediction in terminal areas supports 
proactive flow management, such as adjusting departure 
schedules to reduce delays. While some passengers may face 
rescheduling, early predictions help mitigate disruptions. 
These forecasts also aid in evaluating air traffic management 
(ATM) strategies. By simulating outcomes under new plans, 
operators can verify their effectiveness before deployment. 

 

Fig. 7. PCA Scatter Plot of First Two Components. 

Figure 7 shows that as visualizes traffic data projected onto 
the first two principal components. The clustering of points 
suggests underlying structure in the dataset, revealing 
potential groupings of similar traffic behavior across different 
time periods or locations. 
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Fig. 8. t-SNE Scatter Plot. 

Figure 8 shows that as t-SNE plot provides a non-linear 
dimensionality reduction view of the traffic data. The 
scattered clusters indicate complex relationships in traffic 
patterns that are not easily captured by linear methods, 
offering deeper insights into potential hidden structures in the 
data. 

 

Fig. 9. Predicted vs Actual Traffic Flow. 

Figure 9 shows that as line chart compares the model's 
predicted traffic values with actual observed values over time. 
The close alignment between the two lines indicates accurate 
forecasting performance, validating the model’s ability to 
generalize learned patterns. 

 

Fig. 10. Residuals Plot. 

Figure 10 shows that as the residuals over time. A mostly 
random distribution around zero suggests that the model 
captures the data's structure well, with no strong patterns left 
in the errors indicating a good fit. 

 

Fig. 11. Feature Importance. 

Figure 7 shows that as highlights the most influential features 
in the traffic prediction model. Features with higher 
importance scores contributed more significantly to the 
model’s decisions, offering insights into which factors such as 
specific locations or time indicators most affect traffic flow. 

V. CONCLUSION 

Effective prediction of traffic in terminal areas is critical 
for optimizing air traffic management. Traditional statistical 
models often struggle with the dynamic and unpredictable 
nature of traffic, but deep neural network-based models can 
overcome these challenges. This study introduces a model that 
utilizes transformers, a temporal multilayer network, and 
multi-head self-attention mechanisms for terminal area traffic 
forecasting. The model’s performance is compared to LSTM, 
BP, and GA GMNN models, using metrics like root mean 
squared error (RMSE) and mean absolute error (MAE). The 
results show that the proposed model outperforms others in 
terms of prediction accuracy and MAE reduction. Moreover, 
its parallel computation capabilities make it highly suitable for 
real-time applications. Future work will incorporate additional 
external factors, such as weather, to further improve accuracy. 
It is also recommended to apply this approach to other 
terminal sites, which could enhance air traffic management 
efficiency by improving connectivity between areas. 
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