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ABSTRACT:In this paper, faster column compression multiplication has been achieved by 

using a combination of two design techniques: partition of the partial products into two parts for 

independent parallel column compression and acceleration of the final addition using a hybrid 

adder proposed in this paper. Based on the proposed techniques 8, 16, 32 and 64-bit Dadda 

multipliers are developed and compared with the regular Dadda multiplier.  

The performance of the Dadda multiplier is analyzed by evaluating the delay, area and 

power.The resultanalysis shows that the 64-bit regular Dadda multiplier is asmuch as 41.1% 

slower than the proposed multiplier andrequires only 1.4% and 3.7% less area and power 

respectively.Also the power-delay product of the proposed design issignificantly lower than that 

of the regular Dadda multiplier. 

 

Index Terms- Column compression, Dadda multiplier, Faster,Hybrid final adder. 

 

I. INTRODUCTION 

 

High speed multiplication is a 

primary requirement ofhigh performance 

digital systems. In recent trends thecolumn 

compression multipliers are popular for high 

speedcomputations due to their higher 

speeds [1-2]. The firstcolumn compression 

multiplier was introduced by Wallacein 

1964 [3]. He reduced the partial product of 

N rows bygrouping into sets of three row set 

and two row set using(3,2) counters and 

(2,2) counters respectively. In 1965,Dadda 

altered the approach of Wallace by starting 

with theexact placement of the (3,2)  

 

 

 

counters and (2,2) counters inthe maximum 

critical path delay of the multiplier [4]. 

Since2000’s, a closer reconsideration of 

Wallace and Daddamultipliers has been 

done and proved that the Daddamultiplier is 

slightly faster than the Wallace multiplier 

andthe hardware required for Dadda 

multiplier is lesser than theWallace 

multiplier [5-6]. Since the Dadda multiplier 

has afaster performance, we implement the 

proposed techniquesin the same and the 

improved performance is compared withthe 

regular Dadda multiplier.The column 

compression multipliers have total delays 

thatare proportional to the logarithm of the 
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operand word lengthswhich is unlike the 

array multipliers which have 

speedsproportional to the word length [7-8]. 

The total delay of themultiplier can be split 

up into three parts: due to the PartialProduct 

Generation (PPG), the Partial Product 

SummationTree (PPST), and finally due to 

the Final Adder [9]. Of thesethe dominant 

components of the multiplier delay are due 

tothe PPST and the final adder.  

The relative delay due to thePPG is 

small. Therefore significant improvement in 

thespeed of the multiplier can be achieved 

by reducing the delayin the PPST and the 

final adder stage of the multiplier. In 

thiswork the delay introduced by the PPST 

is reduced by usingtwo independent 

structures in the partial products. proposed 

hybrid final adder computes the final 

productsmuch faster. 

This paper is structured as follows: 

Sections II and IIIdescribe the design of 

parallel structures for the PPST andthe 

design of hybrid final adder structure 

respectively.Section IV reports the ASIC 

implementation details and thesimulation 

results. Finally, Section V summarizes 

theanalysis. Throughout the paper, it is 

assumed that the numberof bits in the 

multiplier and multiplicand are equal. 

 

II. DESIGN OF PARALLEL 

STRUCTURES 

The multiplication process begins 

with the generation ofall partial products in 

parallel using an array of AND gates.The 

next major steps in the design process are 

partitioning ofthe partial products and their 

reduction process. Each ofthese steps are 

elaborated in the following subsections. 

A. Partitioning the partial products: 

We consider two n-bit operands an-1an-

2…a2a1a0 and bn-1bn-2…b2b1b0 for n by 

n Baugh-Wooley multiplier, the 

partialproducts of two n-bit numbers are aibj 

where i,j go from0,1,..n-1. The partial 

products form a matrix of n rows and2n-1 

columns as show in Fig. 1(a). To each 

partial productwe assign a number as shown 

in Fig. 1 (a), e.g. a0b0 is givenan index 0, 

a1b0 the index 1 and so on. For convenience 

werearrange the partial products as shown in 

Fig 1(b). Thelongest column in the middle 

of the partial productscontributes to the 

maximum delay in the PPST. 

Therefore in this work we split-up 

the PPST into two partsas shown in the Fig. 

1(c), in which the Part0 and part1consists of 

n columns. We then proceed to sum up 

eachcolumn of the two parts in parallel. The 

summationprocedure adopted in this work is 

described in the nextsection. 

 

B. The Dadda based reduction:Next the 

partial products of each part are reduced to 

tworows by the using (3,2) and (2,2) 

counters based on theregular Dadda 

reduction algorithm as shown in Fig. 2 

andFig. 3. The grouping of 3-bits and 2-bits 

indicates (3,2) and(2,2) counters 

respectively and the different colors 

classifythe difference between each column, 

where s and c denotepartial sum and partial 

carry respectively. E.g. the bitpositions of 6 

and 13 in part0 are added using a (2,2) 

counterto generate sum s0 and c0. The c0 is 

carried to the nextcolumn where it is to be 

added up with the sum s1 of a (3,2) 
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Fig. 1. Partitioning the partial products: 

(a) Partial product arraydiagram for 8*8 

multiplier, 

(b) An Alternative Representation, 

(c)Partitioned structure of multiplier 

showing part0 and part1. 

counter adding 7, 14 and 21. The carry c1 of 

(3,2) counter isadded to the next column. 

The final two rows of each partare summed 

using a Carry Look-ahead Adder (CLA) to 

formthe partial final products of a height of 

one bit column whichindicated at the bottom 

of Fig. 2 and Fig. 3. 

The two parallel structures for Fig. 2 

and Fig. 3 based onthe Dadda approach are 

shown in Fig. 4, where HA, FA, p0,p1 and p 

denote Half Adder ((2,2)counter)), Full 

Adder((3,2)counter) , partial final product 

from part0, partial finalproduct from part1 

and final product respectively. Thenumerals 

residing on the HA and FA indicates the 

position ofpartial products. 

 The output of part0 and part1 are 

computedindependently in parallel and those 

values are added using ahigh speed hybrid 

final adder to get the final product.However, 

before we proceed to carry out the final 

additionwith the proposed hybrid adder, we 

first carry out the finaladdition with the 

CLA for both the unpartitioned 

Daddamultiplier and the partitioned Dadda 

multiplier. 

 This enablesus to evaluate and 

analyze the effect of partitioning the 

PPSTinto two parts. The simulation results 

are listed in Table I andTable II. The 

comparison between the Table I 
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Fig. 2. Reduction of the partial products of 

part1 based on the Dadda 

approach. 

 

and Table II gives that the percentage 

improvement in delay,area and power of the 

partitioned multipliers with respect tothe 

regular Dadda multiplier. 

It can be seen that for the 8-bit multiplier, 

there is noimprovement in the speed, area 

and power. But with theincrease in the word 

size, the improvement in the speed, areaand 

power of the partitioned multipliers 

increases. There is amaximum of 10.5% 

improvement in delay for the 64-

bitmultiplier with only a slight increase in 

the area and powerof 1% and 1.8% 

respectively. 

Having clearly demonstrated the 

reduction in the delay ofthe Dadda 

multipliers due to the partitioning of the 

partialproducts we now proceed to further 

enhance the speed of theproposed multiplier. 

The further improvement in theperformance 

can be achieved by replacing the CLA with 

theproposed hybrid final adder structure 

which is elaborated inthe next section. 

 

 

 

 
 

Fig. 3. Reduction of multiplier partial 

products of part2 based on the 

Dadda reduction tree. 

 

III. THE HYBRID FINAL ADDER 

DESIGN 
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In previous works the hybrid final 

adder designs used toachieve the faster 

performance in parallel multipliers 

weremade up of CLA (Carry Lookahead 

Adder) and CSLA(Carry Select Adder) [9-

11]. But due to the structure of theCSLA, it 

occupies more chip area than other adders.  

Thus toachieve the optimal 

performance, the proposed hybrid adderin 

this work uses MBEC (Multiplexers with 

Binary toExcess-1 Converters) and Ripple 

Carry Adder (CLA) for fastsummation of 

uneven input arrival time of the 

signalsoriginating from the PPST. The 

MBEC adder provides fasterperformance 

than Carry Save Adder (CSA) and Carry 

LookAhead (CLA) adder [12]. Also it 

consumes less area andpower than the Carry 

Select Adder (CSLA) [13]. 

 

A. Hybrid Adder for 8 by 8Multiplier: 

 

Once each part of the partial 

products has been reduced to a height of one 

bit column, we get the final partial products 

asfollows, 

 
The p0[10:8] are the exceeding carry 

bits of part0 andp1[15] is the carry bit of 

part1. The p[7:0] of part0 aredirectly 

assigned as the final products. To find the 

remainingp[15:8], we use the CLA and the 

MBEC shown in Fig. 5. 

 

 

 

 

 
Fig. 4. The Dadda based implementation:  

(a) Implementation of part1, 

(b) Implementation of part2 
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The p0[10:8] and p1[10:8] are added 

using 3-bit CLA whichfinds p[10:8]. To 

obtain the remaining p[15:11], thep1[15:11] 

are assigned to the input of 5-bit MBEC, 

whichproduce the two partial results 

p1[15:11] with Cin of ‘0’ andthe 5-bit BEC 

output with the Cin of ’1’. Depending on 

theCout of CLA(c[10]), the mux provides 

the final p[15:11]without having to ripple 

the carry through p1[15:11]. 

The 8-bit multiplier uses a single 5-

bit MBEC in the finaladder. But the large bit 

sized multipliers requires multipleMBEC 

and each of them requires the selection input 

fromthe carry output of the preceding 

MBEC. Therefore togenerate the carry 

output from the MBEC, an additionalblock 

is developed which is called MBECWC 

(MBEC WithCarry). 

 The detailed structures of the 5-bit 

BEC withoutcarry (BEC) and with carry 

(BECWC) are shown Fig. 6(a)and Fig. 6(b). 

The BEC gets n inputs and generates n 

output;the BECWC gets n input and 

generates n+1 output to givethe carry output 

as the selection input of the next stage 

muxused in the final adder design of 16, 32 

and 64-bitmultipliers. The function  

 

 

table of BEC and BECWC areshown in 

Table III. 

 

 
Fig. 5. Hybrid final adder of 8 by 8 

multiplier 

 

 
Fig. 6. The 5-bit Binary to Execss-1 Code 

Converter: (a) BEC (without 

carry), (b) BECWC (with carry). 

 

B. Variable Block Hybrid Adder 

The variable size of adder blocks 

always leads to fasteradders than fixed size 

block adder [14]. Thus to furtherimprove the 

speed of addition, we breakdown the ripple 

ofgates in the MBEC into multiple size 

grou

approach the final adder designfor 16, 32 

and 64-bit multipliers are shown in Fig. 7.  
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InMBECWC, the mux is getting n-

bits of data input “as it is”input for selection 

input ‘0’ and n+1-bits of data input fromthe 

BECWC output for selection input ‘1’.  
Thus to makeequal the size of the 

inputs to the mux, the one bit ‘0’ isappended 

as the MSB (Most Significant Bit) to the n-

bits ofinput. E.g. In Fig. 7(a), the 10:5 mux 

of MBECWC gets thetwo inputs: 4-bits (n-

bits) of p[23:20] for selection input ‘0’and 

5-bits (n+1-bits) from the 4-bit BECWC for 

selectioninput ‘1’ respectively. Thus to 

make equal the size of theinputs, the one bit 

‘0’ is appended as the MSB to the inputof 

p[23:20] is like {0,p[23:20]} 

.

 

To analyze independently the effect 

of the proposedhybrid adder, the partitioned 

multiplier with CLA final adderis compared 

with the partitioned multiplier along with 

theproposed hybrid adder. The simulation 

results are listed inTable IV and Table V. 

The comparison between the TableIV and 

Table V gives that the percentage 

improvement in thedelay, area and power of 

the proposed multiplier 

(partitionedmultiplier with hybrid final 

adder) with respect to thepartitioned 

multiplier with CLA final adder. 

 

The plot clearly shows that the 

performance improvementin delay increases 

with the word size of the multiplier. 

Thespeed of the 8, 16, 32 and 64-bit 

multipliers are improved14.9%, 21.1%, 

25.2% and 27.7% respectively. The area 

andpower overhead for all word sizes is only 

slightly higher. 

 

IV. ASIC IMPLEMENTATION AND 

SIMULATION RESULTS 

 

The ASIC implementation of 

proposed design follows thecadence design 

flow. 

The design has been developed 

usingVerilog-HDL and synthesized in 

Encounter RTL compilerusing typical 

libraries of TSMC 180nm technology. 

TheCadence SoC Encounter is adopted for 

Placement & Routing(P&R) [15]. Parasitic 

extraction is performed using 



 
 

Volume 06 Issue 04 June 2017 ISSN : 2456 -5083 Page 726 

 

 
Fig. 7. Variable block hybrid final adder:  

(a) For 16-bit multiplier, (b) For 32-

multiplier, (c) For 64-bit multiplier. 

 

 

 

 
 

 
Encounter Native RC extraction tool. The 

extracted parasiticRC (SPEF format) is back 

annotated to Common TimingEngine in 

Encounter Platform for static timing 

analysis. Foreach word size of the 

multiplier, the same VCD (ValueChanged 

Dump) file is generated for possibleinput 

conditions and imported the same to 

CadenceEncounter. Power Analysis to 

perform the powersimulations. The similar 

design flow is followed for both thedesigns 

in this work. 

 

V. RESULT SUMMARY 

The comparison between the Table I 

(regular Daddamultiplier with CLA) and 

Table V (partitioned multiplierwith hybrid 

adder) summarizes the enhanced 

performance ofthe proposed multiplier in 
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terms of percentages which arelisted in 

Table VI. It exhibits that the area of the 

regularDadda multiplier is only slightly 

lesser, ranging from 7.7%to 1.4% for the 8, 

16, 32 and 64-bits respectively, than thearea 

of the proposed multiplier. It is clear that the 

areaoverhead of the proposed multiplier 

continuously decreaseswith increasing word 

size and is only 1.4% for the 64-

bitmultiplier. 

The power consumption of the 

regular Dadda multiplier is5.2% less than 

the proposed multiplier for the 8-bit 

wordsize. With increasing word size the 

difference in powerrequirement of the 

proposed and the Dadda multiplierdecreases. 

Thus the 64-bit Dadda multiplier requires 

only3.7% less power than the proposed 

multiplier. 

The delay values clearly indicate that 

the proposedmultiplier is always faster than 

the regular Dadda multiplier,also with 

increasing word size the percentage 

reduction ofthe delay increases. The speed 

enhancement is significantfor the 64-bit 

where the regular Dadda requires 41.1% 

moretime than the proposed multiplier. 

VI. CONCLUSION 

The faster multiplication byusing a 

combination of two design techniques; 

partitioningof the partial products into two 

parts to perform independentparallel column 

compression and fast final addition 

usinghybrid final adder structure has 

successfully achieved. The result analysis 

shows thatthe power and area overheads are 

not significant. But thespeed and power-

delay product improvements aresignificant 

compared to the regular Dadda multipliers. 

The proposed multiplier design technique 

can be implementedwith any type of parallel 

multipliers to achieve fasterperformance. 
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