

Vol 06 Issue 04 June 2017 ISSN 2456 – 5083 www.ijiemr.org

COPY RIGHT

2017 IJIEMR. Personal use of this material is permitted. Permission from IJIEMR must

be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works. No Reprint should be done to this paper, all copy

right is authenticated to Paper Authors

IJIEMR Transactions, online available on 8 June 2017. Link :

http://www.ijiemr.org/downloads.php?vol=Volume-6&issue=ISSUE-4

 Title: A Design Technique For Faster Dadda Multiplier.

Volume 06, Issue 04, Pages: 719 – 728.

Paper Authors

* P. SOUJANYA, M. KOTESWARA RAO, D.NAGA RAVIKIRAN (Ph.D.)

*DEPT OF ECE , CHALAPATHI INSTITUTE OF TECHNOLOGY GUNTUR.

.

 USE THIS BARCODE TO ACCESS YOUR ONLINE PAPER

To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar

Code

http://www.ijiemr.org/downloads.php?vol=Volume-6&issue=ISSUE-4

Volume 06 Issue 04 June 2017 ISSN : 2456 -5083 Page 719

A DESIGN TECHNIQUE FOR FASTER DADDA MULTIPLIER

ABSTRACT:In this paper, faster column compression multiplication has been achieved by

using a combination of two design techniques: partition of the partial products into two parts for

independent parallel column compression and acceleration of the final addition using a hybrid

adder proposed in this paper. Based on the proposed techniques 8, 16, 32 and 64-bit Dadda

multipliers are developed and compared with the regular Dadda multiplier.

The performance of the Dadda multiplier is analyzed by evaluating the delay, area and

power.The resultanalysis shows that the 64-bit regular Dadda multiplier is asmuch as 41.1%

slower than the proposed multiplier andrequires only 1.4% and 3.7% less area and power

respectively.Also the power-delay product of the proposed design issignificantly lower than that

of the regular Dadda multiplier.

Index Terms- Column compression, Dadda multiplier, Faster,Hybrid final adder.

I. INTRODUCTION

High speed multiplication is a

primary requirement ofhigh performance

digital systems. In recent trends thecolumn

compression multipliers are popular for high

speedcomputations due to their higher

speeds [1-2]. The firstcolumn compression

multiplier was introduced by Wallacein

1964 [3]. He reduced the partial product of

N rows bygrouping into sets of three row set

and two row set using(3,2) counters and

(2,2) counters respectively. In 1965,Dadda

altered the approach of Wallace by starting

with theexact placement of the (3,2)

counters and (2,2) counters inthe maximum

critical path delay of the multiplier [4].

Since2000’s, a closer reconsideration of

Wallace and Daddamultipliers has been

done and proved that the Daddamultiplier is

slightly faster than the Wallace multiplier

andthe hardware required for Dadda

multiplier is lesser than theWallace

multiplier [5-6]. Since the Dadda multiplier

has afaster performance, we implement the

proposed techniquesin the same and the

improved performance is compared withthe

regular Dadda multiplier.The column

compression multipliers have total delays

thatare proportional to the logarithm of the

P. SOUJANYA

PG SCHOLAR

Dept. of E.C.E

Chalapathi institute of technology

GUNTUR

M. KOTESWARA RAO

Assistant professor

Dept. of E.C.E

Chalapathi institute of technology

GUNTUR

D.NAGA RAVIKIRAN (Ph.D.)

Associate professor, H.O.D

Dept. of E.C.E

Chalapathi institute of technology

GUNTUR

Volume 06 Issue 04 June 2017 ISSN : 2456 -5083 Page 720

operand word lengthswhich is unlike the

array multipliers which have

speedsproportional to the word length [7-8].

The total delay of themultiplier can be split

up into three parts: due to the PartialProduct

Generation (PPG), the Partial Product

SummationTree (PPST), and finally due to

the Final Adder [9]. Of thesethe dominant

components of the multiplier delay are due

tothe PPST and the final adder.

The relative delay due to thePPG is

small. Therefore significant improvement in

thespeed of the multiplier can be achieved

by reducing the delayin the PPST and the

final adder stage of the multiplier. In

thiswork the delay introduced by the PPST

is reduced by usingtwo independent

structures in the partial products. proposed

hybrid final adder computes the final

productsmuch faster.

This paper is structured as follows:

Sections II and IIIdescribe the design of

parallel structures for the PPST andthe

design of hybrid final adder structure

respectively.Section IV reports the ASIC

implementation details and thesimulation

results. Finally, Section V summarizes

theanalysis. Throughout the paper, it is

assumed that the numberof bits in the

multiplier and multiplicand are equal.

II. DESIGN OF PARALLEL

STRUCTURES

The multiplication process begins

with the generation ofall partial products in

parallel using an array of AND gates.The

next major steps in the design process are

partitioning ofthe partial products and their

reduction process. Each ofthese steps are

elaborated in the following subsections.

A. Partitioning the partial products:

We consider two n-bit operands an-1an-

2…a2a1a0 and bn-1bn-2…b2b1b0 for n by

n Baugh-Wooley multiplier, the

partialproducts of two n-bit numbers are aibj

where i,j go from0,1,..n-1. The partial

products form a matrix of n rows and2n-1

columns as show in Fig. 1(a). To each

partial productwe assign a number as shown

in Fig. 1 (a), e.g. a0b0 is givenan index 0,

a1b0 the index 1 and so on. For convenience

werearrange the partial products as shown in

Fig 1(b). Thelongest column in the middle

of the partial productscontributes to the

maximum delay in the PPST.

Therefore in this work we split-up

the PPST into two partsas shown in the Fig.

1(c), in which the Part0 and part1consists of

n columns. We then proceed to sum up

eachcolumn of the two parts in parallel. The

summationprocedure adopted in this work is

described in the nextsection.

B. The Dadda based reduction:Next the

partial products of each part are reduced to

tworows by the using (3,2) and (2,2)

counters based on theregular Dadda

reduction algorithm as shown in Fig. 2

andFig. 3. The grouping of 3-bits and 2-bits

indicates (3,2) and(2,2) counters

respectively and the different colors

classifythe difference between each column,

where s and c denotepartial sum and partial

carry respectively. E.g. the bitpositions of 6

and 13 in part0 are added using a (2,2)

counterto generate sum s0 and c0. The c0 is

carried to the nextcolumn where it is to be

added up with the sum s1 of a (3,2)

Volume 06 Issue 04 June 2017 ISSN : 2456 -5083 Page 721

Fig. 1. Partitioning the partial products:

(a) Partial product arraydiagram for 8*8

multiplier,

(b) An Alternative Representation,

(c)Partitioned structure of multiplier

showing part0 and part1.

counter adding 7, 14 and 21. The carry c1 of

(3,2) counter isadded to the next column.

The final two rows of each partare summed

using a Carry Look-ahead Adder (CLA) to

formthe partial final products of a height of

one bit column whichindicated at the bottom

of Fig. 2 and Fig. 3.

The two parallel structures for Fig. 2

and Fig. 3 based onthe Dadda approach are

shown in Fig. 4, where HA, FA, p0,p1 and p

denote Half Adder ((2,2)counter)), Full

Adder((3,2)counter) , partial final product

from part0, partial finalproduct from part1

and final product respectively. Thenumerals

residing on the HA and FA indicates the

position ofpartial products.

 The output of part0 and part1 are

computedindependently in parallel and those

values are added using ahigh speed hybrid

final adder to get the final product.However,

before we proceed to carry out the final

additionwith the proposed hybrid adder, we

first carry out the finaladdition with the

CLA for both the unpartitioned

Daddamultiplier and the partitioned Dadda

multiplier.

 This enablesus to evaluate and

analyze the effect of partitioning the

PPSTinto two parts. The simulation results

are listed in Table I andTable II. The

comparison between the Table I

Volume 06 Issue 04 June 2017 ISSN : 2456 -5083 Page 722

Fig. 2. Reduction of the partial products of

part1 based on the Dadda

approach.

and Table II gives that the percentage

improvement in delay,area and power of the

partitioned multipliers with respect tothe

regular Dadda multiplier.

It can be seen that for the 8-bit multiplier,

there is noimprovement in the speed, area

and power. But with theincrease in the word

size, the improvement in the speed, areaand

power of the partitioned multipliers

increases. There is amaximum of 10.5%

improvement in delay for the 64-

bitmultiplier with only a slight increase in

the area and powerof 1% and 1.8%

respectively.

Having clearly demonstrated the

reduction in the delay ofthe Dadda

multipliers due to the partitioning of the

partialproducts we now proceed to further

enhance the speed of theproposed multiplier.

The further improvement in theperformance

can be achieved by replacing the CLA with

theproposed hybrid final adder structure

which is elaborated inthe next section.

Fig. 3. Reduction of multiplier partial

products of part2 based on the

Dadda reduction tree.

III. THE HYBRID FINAL ADDER

DESIGN

Volume 06 Issue 04 June 2017 ISSN : 2456 -5083 Page 723

In previous works the hybrid final

adder designs used toachieve the faster

performance in parallel multipliers

weremade up of CLA (Carry Lookahead

Adder) and CSLA(Carry Select Adder) [9-

11]. But due to the structure of theCSLA, it

occupies more chip area than other adders.

Thus toachieve the optimal

performance, the proposed hybrid adderin

this work uses MBEC (Multiplexers with

Binary toExcess-1 Converters) and Ripple

Carry Adder (CLA) for fastsummation of

uneven input arrival time of the

signalsoriginating from the PPST. The

MBEC adder provides fasterperformance

than Carry Save Adder (CSA) and Carry

LookAhead (CLA) adder [12]. Also it

consumes less area andpower than the Carry

Select Adder (CSLA) [13].

A. Hybrid Adder for 8 by 8Multiplier:

Once each part of the partial

products has been reduced to a height of one

bit column, we get the final partial products

asfollows,

The p0[10:8] are the exceeding carry

bits of part0 andp1[15] is the carry bit of

part1. The p[7:0] of part0 aredirectly

assigned as the final products. To find the

remainingp[15:8], we use the CLA and the

MBEC shown in Fig. 5.

Fig. 4. The Dadda based implementation:

(a) Implementation of part1,

(b) Implementation of part2

Volume 06 Issue 04 June 2017 ISSN : 2456 -5083 Page 724

The p0[10:8] and p1[10:8] are added

using 3-bit CLA whichfinds p[10:8]. To

obtain the remaining p[15:11], thep1[15:11]

are assigned to the input of 5-bit MBEC,

whichproduce the two partial results

p1[15:11] with Cin of ‘0’ andthe 5-bit BEC

output with the Cin of ’1’. Depending on

theCout of CLA(c[10]), the mux provides

the final p[15:11]without having to ripple

the carry through p1[15:11].

The 8-bit multiplier uses a single 5-

bit MBEC in the finaladder. But the large bit

sized multipliers requires multipleMBEC

and each of them requires the selection input

fromthe carry output of the preceding

MBEC. Therefore togenerate the carry

output from the MBEC, an additionalblock

is developed which is called MBECWC

(MBEC WithCarry).

 The detailed structures of the 5-bit

BEC withoutcarry (BEC) and with carry

(BECWC) are shown Fig. 6(a)and Fig. 6(b).

The BEC gets n inputs and generates n

output;the BECWC gets n input and

generates n+1 output to givethe carry output

as the selection input of the next stage

muxused in the final adder design of 16, 32

and 64-bitmultipliers. The function

table of BEC and BECWC areshown in

Table III.

Fig. 5. Hybrid final adder of 8 by 8

multiplier

Fig. 6. The 5-bit Binary to Execss-1 Code

Converter: (a) BEC (without

carry), (b) BECWC (with carry).

B. Variable Block Hybrid Adder

The variable size of adder blocks

always leads to fasteradders than fixed size

block adder [14]. Thus to furtherimprove the

speed of addition, we breakdown the ripple

ofgates in the MBEC into multiple size

grou

approach the final adder designfor 16, 32

and 64-bit multipliers are shown in Fig. 7.

Volume 06 Issue 04 June 2017 ISSN : 2456 -5083 Page 725

InMBECWC, the mux is getting n-

bits of data input “as it is”input for selection

input ‘0’ and n+1-bits of data input fromthe

BECWC output for selection input ‘1’.
Thus to makeequal the size of the

inputs to the mux, the one bit ‘0’ isappended

as the MSB (Most Significant Bit) to the n-

bits ofinput. E.g. In Fig. 7(a), the 10:5 mux

of MBECWC gets thetwo inputs: 4-bits (n-

bits) of p[23:20] for selection input ‘0’and

5-bits (n+1-bits) from the 4-bit BECWC for

selectioninput ‘1’ respectively. Thus to

make equal the size of theinputs, the one bit

‘0’ is appended as the MSB to the inputof

p[23:20] is like {0,p[23:20]}

.

To analyze independently the effect

of the proposedhybrid adder, the partitioned

multiplier with CLA final adderis compared

with the partitioned multiplier along with

theproposed hybrid adder. The simulation

results are listed inTable IV and Table V.

The comparison between the TableIV and

Table V gives that the percentage

improvement in thedelay, area and power of

the proposed multiplier

(partitionedmultiplier with hybrid final

adder) with respect to thepartitioned

multiplier with CLA final adder.

The plot clearly shows that the

performance improvementin delay increases

with the word size of the multiplier.

Thespeed of the 8, 16, 32 and 64-bit

multipliers are improved14.9%, 21.1%,

25.2% and 27.7% respectively. The area

andpower overhead for all word sizes is only

slightly higher.

IV. ASIC IMPLEMENTATION AND

SIMULATION RESULTS

The ASIC implementation of

proposed design follows thecadence design

flow.

The design has been developed

usingVerilog-HDL and synthesized in

Encounter RTL compilerusing typical

libraries of TSMC 180nm technology.

TheCadence SoC Encounter is adopted for

Placement & Routing(P&R) [15]. Parasitic

extraction is performed using

Volume 06 Issue 04 June 2017 ISSN : 2456 -5083 Page 726

Fig. 7. Variable block hybrid final adder:

(a) For 16-bit multiplier, (b) For 32-

multiplier, (c) For 64-bit multiplier.

Encounter Native RC extraction tool. The

extracted parasiticRC (SPEF format) is back

annotated to Common TimingEngine in

Encounter Platform for static timing

analysis. Foreach word size of the

multiplier, the same VCD (ValueChanged

Dump) file is generated for possibleinput

conditions and imported the same to

CadenceEncounter. Power Analysis to

perform the powersimulations. The similar

design flow is followed for both thedesigns

in this work.

V. RESULT SUMMARY

The comparison between the Table I

(regular Daddamultiplier with CLA) and

Table V (partitioned multiplierwith hybrid

adder) summarizes the enhanced

performance ofthe proposed multiplier in

Volume 06 Issue 04 June 2017 ISSN : 2456 -5083 Page 727

terms of percentages which arelisted in

Table VI. It exhibits that the area of the

regularDadda multiplier is only slightly

lesser, ranging from 7.7%to 1.4% for the 8,

16, 32 and 64-bits respectively, than thearea

of the proposed multiplier. It is clear that the

areaoverhead of the proposed multiplier

continuously decreaseswith increasing word

size and is only 1.4% for the 64-

bitmultiplier.

The power consumption of the

regular Dadda multiplier is5.2% less than

the proposed multiplier for the 8-bit

wordsize. With increasing word size the

difference in powerrequirement of the

proposed and the Dadda multiplierdecreases.

Thus the 64-bit Dadda multiplier requires

only3.7% less power than the proposed

multiplier.

The delay values clearly indicate that

the proposedmultiplier is always faster than

the regular Dadda multiplier,also with

increasing word size the percentage

reduction ofthe delay increases. The speed

enhancement is significantfor the 64-bit

where the regular Dadda requires 41.1%

moretime than the proposed multiplier.

VI. CONCLUSION

The faster multiplication byusing a

combination of two design techniques;

partitioningof the partial products into two

parts to perform independentparallel column

compression and fast final addition

usinghybrid final adder structure has

successfully achieved. The result analysis

shows thatthe power and area overheads are

not significant. But thespeed and power-

delay product improvements aresignificant

compared to the regular Dadda multipliers.

The proposed multiplier design technique

can be implementedwith any type of parallel

multipliers to achieve fasterperformance.

REFERENCES

[1] B.Parhami, "Computer Arithmetic",

Oxford University Press, 2000.

[2] E. E. Swartzlander, Jr. and G. Goto,

"Computer arithmetic," TheComputer

Engineering Handbook, V. G. Oklobdzija,

ed., BocaRaton, FL: CRC Press, 2002.

[3] C. S. Wallace, “A Suggestion for a Fast

Multiplier,” IEEETransactions on

Electronic Computers, Vol. EC-13, pp. 14-

17,1964.

[4] Luigi Dadda, “Some Schemes for

Parallel Multipliers,” AltaFrequenza, Vol.

34, pp. 349-356, August 1965.

[5] K.C. Bickerstaff, E.E. Swartzlander,

M.J. Schulte, Analysis of

columncompression multipliers,

Proceedings of 15th IEEE Symposium

onComputer Arithmeitc,2001.

[6] W. J. Townsend, Earl E. Swartzlander

and J.A. Abraham, “Acomparison of Dadda

and Wallace multiplier delays”,
AdvancedSignal Processing Algorithms,

Architectures and ImplementationsXIII.

Proceedings of the SPIE, vol. 5205, 2003,

pages 552-560.

[7] P. R. Cappello and K Steiglitz: A VLSI

layout for a pipe-lined Daddamultiplier,

ACM Transactions on Computer

Systems,pp. 157-174,1983.

[8] Bickerstaff, K.C.”Optimization of

Column Compression Multipliers”Doctoral

Dissertation, Dept. of Electrical and

Computer Engineering,University of Texas

at Austin, Austin, Texas, 2007.

[9] V. G. Oklobdzija and D.Villeger,

“Improving Multiplier Design byUsing

Volume 06 Issue 04 June 2017 ISSN : 2456 -5083 Page 728

Improved Column Compression Tree and

Optimized FinalAdder in CMOS

Technology”, IEEE transactions on Very

LargeScale Integration (VLSI) systems, Vol.

3, no. 2, June 1995.

[10] Paul F.Stelling, “Design strategies for

optimal hybrid final adders inparallel

multiplier”,Journal of VLSI signal

processing, vol 14,pp,321-331,1996.

Project Guide: M. Koteswararao Assistant

professor,ECE Department

HOD: D.NAGA RAVIKIRAN,M.TECH,(Ph.D),

Associate professor, ECE Department

Pamulapati. Soujanya

studied B.Tech at tenali

engineering college and at

present she is pursuing

M.Tech at chalapathi

engineering college. Her

area of interest is V.L.S.I

Design.

