
www.ijiemr.org Volume number:01, Issue number:02 Page 18

A Security Model for Protecting Location Based Queries

*N.PRASANNA **K.MAHESH

*M.TECH student , Dept of CSE, VAAGDEVI COLLEGE OF ENGINEERING

**Assistant Professor, Dept of CSE , VAAGDEVI COLLEGE OF ENGINEERING

ABSTRACT: This paper presents a solution to one of the location-based query problems. This

problem is defined as follows: (i) a user wants to query a database of location data, known as

Points Of Interest (POI), and does not want to reveal his/her location to the server due to privacy

concerns; (ii) the owner of the location data, that is, the location server, does not want to simply

distribute its data to all users. The location server desires to have some control over its data,

since the data is its asset.A location based query solution that employs two protocols that enables

a user to privately determine and acquire location data. The first step is for a user to privately

determine his/her location using oblivious transfer on a public grid. Oblivious Transfer used to

achieve a more secure solution for both parties. The second step involves a private information

retrieval interaction that retrieves the record with high communication efficiency. The solution

which is present is efficient and practical in many scenarios. This paper includes the results of a

working prototype to illustrate the efficiency of our protocol.

KEYWORDS: content based mining, location based services, NN(nearest Neighbour) , POI

(points of Interest), Valid region (VR)

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 19

I. INTRODUCTION

Location Based Services (LBSs), also

known as location dependent information

services (LDISs), have been recognized as

an important context-aware application in

pervasive computing environments. Spatial

queries are one of the most important LBSs.

According to spatial constraints, spatial

queries can be divided into several

categories including nearest neighbor (NN)

queries and window queries. An NN query

is to find the nearest data object with

respect to the location at which the query is

issued (referred to as the query location of

the NN query). For example, a user may

launch an NN query like “show the nearest

coffee shop with respect to my current

location.” On the other hand, a window

query is to find all the objects within a

specific window frame. An example window

query is “show all restaurants in my car

navigation window.” In general, a mobile

client continuously launches spatial queries

until the client obtains a satisfactory answer.

For example, a query “show me the rate of

the nearest hotel with respect tomy current

location” is continuously submitted in a

moving car so as to find a desired hotel. The

naive method answering continuous spatial

queries is to submit a new query whenever

the query location changes. The naïve

method is able to provide correct results, but

it poses the following problems: High power

consumption. The power consumption of a

mobile device is high since the mobile

device keeps submitting queries to the LBS

server. Heavy server load. A continuous

query usually consists of a number of

queries to the LBS server, thereby

increasing the load on the LBS server.

Fortunately, in the real world, the queries of

a continuous query usually exhibit spatial

locality. Thus, caching the query result and

the corresponding valid region (VR) in the

client side cache was proposed to mitigate

the above problems. The valid region, also

known as the valid scope, of a query is the

region where the answer of the query

remains valid. Subsequent queries can be

avoided as long as the client is in the valid

region. In this paper, we focus on the

efficient processing of location dependent

queries and, in particular, a sub-class of

queries called mobile nearest-neighbor (NN)

search. A mobile NN search is issued by a

mobile client to retrieve stationary service

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 20

objects nearest to its user.1 It is an important

function for LBSs, but the implementation is

difficult since the clients are mobile and

queries must be answered based on the

clients’ current locations. If a client keeps

moving after it issued a query, the query

result would continue to change in

accordance with the client’s movement. As

such, it is difficult to obtain results which

are accurate with respect to the position pat

which the user receives them. Despite the

fact that LBSs open up new research

opportunities, most of the on-going research

work still concentrates on traditional queries

which return answers independent to the

locations of the query issuers. In other

words, each data object has only one set of

attribute values in the server. If a client

caches a local copy of the data to improve

performance, the cached data become

invalid only when the corresponding copy in

the server is updated. As for location-

dependent queries, a data object usually has

multiple sets of attribute values, each of

which is valid only when the client is

located within a specific region. While

mobile data caching and invalidation for

locationindependent queries has been

actively pursued in the mobile computing

research community, very few work had

been done on indexing and query processing

techniques for location-dependent queries.

II. RELATED WORK

The advent of high-speed wireless networks

and the popularity of portable devices have

fueled the development of mobile

computing. Compared to traditional

computing paradigms, mobile computing

enables clients to have unrestricted mobility

while maintaining network connection. The

ability of users to move and identify their

own locations opens up a new kind of

information services, called location-

dependent information services (LDISs),

which produce the answer to a query

according to the location of the client

issuing the query . Examples of mobile

LDISs include nearest object searching (e.g.,

finding the nearest restaurant) and local

information access (e.g., local traffic, news,

and attractions. The spatial property of

location-dependent data introduces new

problems for data caching research. First,

the cached result for a query (e.g., the

nearest restaurant) may become invalid

when the client moves from one location to

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 21

another. The maintenance of the validity of

the cached data when the client changes

location is called location-dependent cache

invalidation. Second, the cache replacement

policy on the client has to

consider the sizes of the valid scopes

p(hereinafter called valid scope areas) of the

cached values. The valid scope of a data

value is defined as the geographical area

within which the data value is valid. When

the valid scope of a data value is large, the

chance for the client to issue the same query

within the valid scope, thus generating a

cache hit, is also large. As such, the cache

replacement policy should try to retain the

data value with pa larger valid scope area in

the cache. [1] Owing to increasing demands

from mobile users, Location-Based Services

(LBSs) have received a lot of attention in

recent years. Examples of queries for

location-based services include “find the

nearest gas station from my current

location”, “find all the cinemas within 1 km

radius”, “which buses will pass by me in the

next 10 minutes?” and so on. While data

objects in the first two examples are

stationary, those in the last example are

mobile. In this paper, we focus on queries

issued by mobile users on relatively static

data objects, because they are the most

common kind of queries in LBSs. The

movement of mobile clients presents many

new research problems for location-

dependent query processing there are several

technical issues involved with the

implementation of an LBS, which include

locating the position of a mobile user,

tracking and predicting movements,

processing queries efficiently, and bounding

location errors. [2] Consider a computing

environment with a large number of

location-aware mobile objects. We want to

retrieve the mobile objects inside a set of

user-defined spatial regions and

continuously monitor the population of these

windows over a time period. In this paper,

we refer to such continuous queries as

range-monitoring queries. Efficient

processing of range-monitoring queries

could enable many useful applications.

similarly, we might want to track traffic

condition pin some area and dispatch more

police to the region if the number of vehicles

inside exceeds a certain threshold. In such

applications, it is highly desirable and

sometime critical to provide accurate results

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 22

and update them pin real time whenever

mobile objects enter or exit the regions of

interest. Unlike conventional range queries,

a range-monitoring query is a continuous

query. It stays active until it is terminated

explicitly by the user. As objects continue to

move, the query results change accordingly

and require continuous updates. A simple

strategy for computing range monitoring

queries is to have each object report its

position as it moves. The server uses this

information to identify the affected queries,

and updates their results accordingly. This

simple approach requires excessive location

updates, and obviously is not scalable. Each

location update consists of two expenses –

mobile communication cost and server

processing cost. If a battery-powered object

has to constantly report its location, the

battery would be exhausted very quickly. It

is well-known that sending a wireless

message consumes substantially

more energy than running simple procedures

. [3] .

Mobile devices with computational, storage,

and wireless communication capabilities

(such as PDAs) are becoming increasingly

popular. At the same time, the technology

behind positioning systems is constantly

evolving, enabling the integration of low

cost GPS devices in any portable unit.

Consequently, new mobile computing

applications are expected to emerge,

allowing users to issue location-dependent

queries in a ubiquitous manner. Consider,

for instance, a user (mobile client) in an

unfamiliar city, who would like to know the

10 closest restaurants. This is an instance of

a k nearest neighbor (kNN) query, where the

query point is the current location of the

client and the set of data objects contains the

city restaurants. Alternatively, the user may

ask for all restaurants located within a

certain distance, i.e., within 200 meters.[5]

This is an instance of a range query. Spatial

queries have been studied extensively in the

past, and numerous algorithms exist (for

processing snapshot queries on static data

indexed by a spatial access method.

Subsequent methods focused on moving

queries (clients) and/or objects. The main

idea is to return some additional information

(e.g., more NNs expiry time validity region

that determines the lifespan of the result.

Thus, a moving client needs to issue another

query only after the current result expires.

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 23

These methods focus on single query

processing, make certain assumptions about

object movement and do not include

mechanisms for maintenance of the query

results (i.e., when the result expires, a new

query must be issued). Recent research

considers continuous monitoring of multiple

queries over arbitrarily moving objects. In

this setting, there is a central server that

monitors the locations of both objects and

queries. The task of the server is to report

and continuously update the query results as

the clients and the objects move. As an

example, consider that the data objects are

vacant cabs and the clients are pedestrians

that wish to know their k closest free taxis

until they hire one. [6]As the reverse case,

the queries may correspond to vacant cabs,

and each free taxi driver wishes to be

continuously informed about his/her k

closest pedestrians. Several monitoring

methods have been proposed, covering both

range and kNN queries. Some of these

methods assume that objects issue updates

whenever they move, while others consider

that data objects have some computational

capabilities, so that they inform the server

only when their movement influences some

query.

III. LOCATION BASED QUERIES

In this paper, we propose a novel protocol

for location based queries that has major

performance improvements with respect to

the approach by Ghinita. Like such protocol,

our protocol is organized according to two

stages. In the first stage, the user privately

determines his/her location within a public

grid, using oblivious transfer associated

symmetric key for the block of data in the

private grid. In the second stage, the user

executes a communicational efficient PIR, to

retrieve the appropriate block in the private

grid. This block is decrypted using the

symmetric key obtained in the previous

stage. Our protocol thus provides protection

for both the user and the server. The user is

protected because the server is unable to

determine his/her location. Similarly, the

server’s data is protected since a malicious

user can only decrypt the block of data

obtained by PIR with the encryption key

acquired in the previous stage. In other

words, users cannot gain any more data than

what they have paid for. We also provide

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 24

results from a working prototype showing

the efficiency of our approach.

3.1 SYSTEM DESIGN

The proposed system architecture for NN

and window query processing. The system

architecture consists of three parts: 1) an

external LBS server, 2) deployed proxies,

and 3) the mobile clients. The LBS server is

responsible for managing static data objects

and answering the queries submitted by the

proxies. Note that the LBS server can use

any index structure (e.g., R-tree or grid

index) to process spatial queries. The LBS

server is assumed not to provide VRs. Each

of the deployed proxies supervises one

service area and provides of window queries

for mobile clients in the service area. Each

base station serves as an intermediate relay

for queries and query results between mobile

clients and the associated proxy. Base

stations, proxies, and the LBS server are

connected by a wired network. A mobile

client maintains a cache to store the query

results and the corresponding. When a

mobile client has a spatial query, the mobile

device first examines whether the current

location is in the of the stored result. If so,

the stored result remains valid and the

mobile device directly shows it to the client.

Otherwise, the mobile device submits the

query, which is received and then forwarded

by the base station, to the proxy. For the

received query, the proxy will return the

query result as well as the corresponding

EVR to the client

3.2.1 Clients Process

The mobile device submits the query, which

is received and then forwarded by the base

station, to the proxy. For the received query,

the proxy will return the query result as well

as the corresponding EVR to the client.The

mobile device submits the number of query

to proxy.A large number of queries

submitted by mobile clients.

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 25

3.2.2 Proxy Module:

In this module build proxy server to estimate

EVRs of NN queries and EWVs of window

queries based on NN query history and

available data objects. The LBS server can

use any index structure e.g., R-tree or grid

index to process spatial queries. The proxy

maintains an object cache and two index

structures: an EVR-tree for NN queries and

a grid index for window queries. The two

index structures share the data objects in the

object cache.

EVR-TREE GENERATION FOR NN

The EVR-tree is an R-tree (or its variants)

composed of EVRs where each EVR is

wrapped in a minimum bounding box

(MBR). An EVR consists of the region

vertices with respect to a data object and a

pointer to the corresponding object entry in

the object cache. When an NN query point q

is located in an EVR of the EVR-tree, the

proxy retrievesthe corresponding object

from the object cache to answer the query.

GENERATION OF GRID CELL FOR

WINDOW QUERIES

Grid cells are classified into two categories:

fully cached cells and uncached cells All

grid cells are initialized to uncached. The

proxy marks a cell as fully cached when all

the objects within the cell are received. The

corresponding grid index entry of a fully

cached cell caches the object pointers to the

associated object entries in the object cache.

The purpose of fully cached and uncached

cells is to realize the stored object

distribution, enabling the proxy to create

EWVs of window queries effectively. When

receiving a window query, the proxy obtains

the result and creates the corresponding

EWV by retrieving stored objects in the

surrounding fully cached cells

3.2.3. Server Module

The LBS server is responsible for managing

static data objects and answering the queries

submitted by the proxies.

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 26

3.2.4 Sharing-based nearest neighbor

query Module

The sharing-based nearest neighbor query

Module provides a rendering of the

verification process of a sharing-based NN

query in a step-by-step manner. Users can

arbitrarily select a mobile host and launch a

Locationbased NN query within region.

3.3 ALGORITHM

R Tree algorithm:

R-trees can be more efficient for data

storage and speed at search execution time,

though they are generally tied to the internal

structure of a given data storage system. R-

trees are tree data structures used for spatial

access methods, i.e., for indexing multi-

dimensional information such

as geographical coordinates, rectangles or

polygons. A common real-world usage for

an R-tree might be to store spatial objects

such as restaurant locations or the polygons

that typical maps are made of: streets,

buildings, outlines of lakes, coastlines,

Grid index algorithm:

The individual cells of a grid system can

also be useful as units of aggregation, for

example as a precursor to data analysis,

presentation, mapping, etc. A grid index is a

used for spatial indexing purposes. A wide

variety of such grids have been proposed or

are currently in use, including grids based on

"square" or "rectangular" cells, triangular

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 27

grids or meshes, hexagonal grids, grids

based on diamond-shaped cells, and possibly

more. The range is broad and the

possibilities are expanding.

Melkman’s algorithm:

The Melkman’s algorithm to compute the

convex polygon of the updated EVR to

remove the unnecessary vertices and achieve

a larger region size. The convex polygon

serves as the final updated EVR .

IV. EXPERIMENT SETUP & RESULT

This paper was implemented in .net

framwork and backend used sql.

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 28

V. CONCLUSION

In this paper we have presented a location

based query solution that employs two

protocols that enables a user to privately

determine and acquire location data. The

first step is for a user to privately determine

his/her location using oblivious transfer on a

public grid. The second step involves a

private information retrieval inter action that

retrieves the record with high

communication efficiency. We analyzed the

performance of our protocol and found it to

be both

computationally and communicational more

efficient than the solution by Ghinita et al.,

which is the most recent solution. We

implemented a software prototype using a

desktop machine and a mobile device. The

software prototype demonstrates that our

protocol is within practical limits. Future

work will involve testing the protocol on

many different mobile devices. The mobile

result we provide may be different than

http://www.ijiemr.org/

www.ijiemr.org Volume number:01, Issue number:02 Page 29

other mobile devices and software

environments. Also, we need to reduce the

overhead of the primarily test used in the

private information retrieval based protocol.

Additionally, the problem concerning the LS

supplying misleading data to the client is

also interesting. Privacy preserving

reputation techniques seem a suitable

approach to address such problem. A

possible solution could integrate methods

from. Once suitable strong solutions exist

for the general case, they can be easily

integrated into our approach.

REFERENCES

[1] D. Lee, B. Zheng, and W.-C. Lee, “Data

Management in Location- Dependent

Information Services,” IEEE Pervasive

Computing, vol. 1, no. 3, pp. 65-72, July-

Sept. 2002.

[2] B. Zheng, J. Xu, and D.L. Lee, “Cache

Invalidation and Replacement Strategies for

Location-Dependent Data in Mobile

Environments,” IEEE Trans. Computers,

vol. 15, no. 10, pp. 1141-

1153, Oct. 2002.

[3] B. Zheng and D.L. Lee, “Processing

Location-Dependent Queries in a Multi-Cell

Wireless Environment,” Proc. Second ACM

Int’l Workshop Data Eng. for Wireless and

Mobile Access, 2001.

[4] B. Zheng, J. Xu, W.-C. Lee, and D.L.

Lee, “On Semantic Caching and Query

Scheduling for Mobile Nearest-Neighbor

Search,” Wireless Networks, vol. 10, no. 6,

pp. 653-664, Dec. 2004.

[5] X. Gao and A. Hurson, “Location

Dependent Query Proxy,” Proc.ACM Int’l

Symp. Applied Computing, pp. 1120-1124,

2005.

[6] X. Gao, J. Sustersic, and A.R. Hurson,

“Window Query Processingwith Proxy

Cache,”

AUTHOR 1 :-

*N. Prasanna completed her B tech in

Vaagdevi College of Engineering and

pursuing M-Tech in Vaagdevi College of

Engineering

AUTHOR 2:-

**K. Mahesh is working as Assistant

Professor in Dept of CSE , Vaagdevi

College of Engineering

http://www.ijiemr.org/

