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Abstract 
Keratoconus is a bilateral, degenerate eye disorder that affects the cornea. It is characterized by 

thinning and bulging of the cornea outward into the shape of a cone. It is a progressive disease 

if not treated early, leads to decrease in visual acuity and quality of life. Hence early diagnosis 

of the disease is necessary for effective treatment. This study proposes a machine learning 

approach for detection of keratoconus from corneal topographic maps. Discrete wavelet 

transform (DWT) techniques were employed for feature extraction from Pentacam-derived 

corneal topographic maps. Four distinct wavelet families were utilized: biorthogonal (bior1.5), 

reverse biorthogonal (rbio3.1), and Daubechies (db4) and haar wavelets. Each wavelet is applied 

with a decomposition level of four and L1 regularized Logistic Regression is used for feature 

selection. Light Gradient Boosting Machine (LightGBM) is used for the classification of 

keratoconus from corneal topographic maps derived from Pentacam instrument. Simulation 

results show that LightGBM has performed better on features extracted by rbio3.1 wavelet from 

the corneal topographic map dataset, with an overall accuracy of 87.19%, F1 score of 0.86 and 

AUC score of 0.96. 

 

Keywords: Keratoconus, Corneal topographic maps, Discrete Wavelet Transform, Light Gradient 

Boosting Machine, Multi-class classification. 

 

Introduction 
Keratoconus is an eye disease that results in 

gradual thinning of the cornea leading to 

reduced vision [1]. Traditionally described as 

non-inflammatory [2], recent studies show 

that eyes with keratoconus have some form of 

inflammation [3]. Even though a bilateral 

disorder, one eye tends to get affected more 

severely than the other [4]. The disease 

typically manifests after puberty and 

progresses with a varied rate over two to three 

decades [5]. The advanced cases are easily 

diagnosed due to presence of clinical 

symptoms such as Munson’s sign, Fleischer’s 

Ring, Rizzuti’s sign and Vogt’s striae [6]. 

Ophthalmologists diagnose this disease based 

on corneal topography and tomography.  

These instruments capture the surface 

curvature of the cornea [7]. Early detection of 

keratoconus (KCN) is crucial as the 

progression of the disease can be halted or 

slowed with corneal collagen cross linking 

procedure [8]. But the early diagnosis can be 

challenging as disease can be asymptomatic 

[9]. Moreover, the diagnostic grading of 

subclinical KCN has not reached a global 

consensus [10] such that of diabetic 

retinopathy [11].  

To address these issues many machine 

learning models have been proposed to aid 
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ophthalmologists to detect KCN. Machine 

learning and deep learning may provide better 

diagnosability and ease the burden on health 

care personnels when implemented as 

automated screening tool [12]. 

 

The main aim of this study is to evaluate the 

classification performance of machine 

learning in detecting keratoconus from 

corneal topographic maps obtained from the 

Pentacam HR instrument. 

 

The proposed methodology employs discrete 

wavelet transform DWT-based feature 

extraction within the L*a*b* colour space. 
L1-penalized logistic regression is used for 

feature selection to enhance model 

interpretability by isolating the most 

discriminative wavelet coefficients, thereby 

reducing feature dimensionality. The final 

classification is performed using a 

hyperparameter-optimized LightGBM 

classifier. 

 

The remainder of this paper is organised as 

follows: Section 2 reviews the related work on 

keratoconus detection and wavelet-based 

image analysis in medical imaging. Section 3 

details the proposed methodology, including 

data acquisition, data preprocessing, feature 

extraction using DWT in L*a*b* colour 

space, feature selection, and the LightGBM 

classification framework. Section 4 presents 

the performance metrics, and evaluation 

results and experimental setup followed by a 

comprehensive discussion in Section 5. 

Finally, Section 6 concludes the paper with 

key findings and future research directions. 

 

Literature Survey 

In scientific literature there are numerous 

papers that employ machine learning 

algorithms in keratoconus detection H.Maile 

et.al [13].  

Alyaa H Ali et al. [14] used image processing 

technique and SVM classifier to detect 

keratoconus from a sample size of 40 cases 

derived from corneal topographic maps and 

achieved an accuracy of 90%. Yousefi et al 

[15] proposed an unsupervised machine 

learning model for keratoconus severity 

identification. They have used 420 corneal 

parameters derived from 3156 eyes using 

CASIA OCT imaging systems. They have 

used ESI for better identification of 

keratoconus stages.  

 

Lavric et al, [16] utilized 443 corneal 

parameters from 3136 eyes to develop 

machine learning model for KC detection. 

They implemented 25 ML models and 

obtained highest classification accuracy of 

94% with SVM for binary classification 

between healthy and KCN eyes and 93% 

accuracy for multi-class classification 

between healthy, forme fruste and 

keratoconic eyes.  

 

Kuo B-I et al, [17] proposed a deep learning 

approach for keratoconus screening using 

corneal topographic maps, they have 

achieved an AUC score of 0.995 using 

ResNet 152.  

 

Ali. H Al-Timemy et al [18] developed a 

hybrid DL model with efficient-net b0 and 

SVM classifier and obtained an accuracy of 

81.6% for a three-class of detecting 

keratoconus from corneal topographic maps.  

 

Al-Sharify et al [19] employed decision tress 

and nearest neighbour analysis in classifying 

keratoconus based on corneal parameters and 

achieved an accuracy of 65.7% and 62.6% on 

test set.  

 

Chaari et al [20] used an automated feature 

selection of corneal parameters for early 

keratoconus screening and achieved a highest 

accuracy of 98.95% and 97.08% using 

support vector machine (SVM) for 2 and 4 

classes respectively.  
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Kallel et al [21] used  SyntEyes and GAN 

models to generate synthetic dataset for KC 

classification and achieved an accuracy 

ranging from 95.3% to 99.74%.  

 

Gandhi et al [22] extracted pattern 

irregularities from corneal topographic maps 

and used transfer learning approach and have 

achieved a test accuracy of 77.43% on 

VGG19 

 

Ahmed et al [23] used transformer based on 

pre trained models for KC disease detection 

using augmented corneal map dataset and 

achieved 98% accuracy with mobile net V2. 

 

In a study done by E. Jawad et al [24] RGB 

to LAB colour space conversion was used to 

enhance the retinal image quality.  

 

R Harikumar et al [25] proposed DWT for 

feature extraction from MRI images for 

classification between Normal and 

pathological cases.  

 

S. Ryali et, al [26] used logistic regression 

with L1 norm regularization for feature 

selection and classification of fMRI data. 

 

Materials and Methods 

Data collection 

In this study, 2961 corneal images gathered 

from 542 eyes using Oculus Pentacam are 

included. This dataset was made available to 

the research community through earlier 

studies [18]. The dataset used in this study 

consists of 3 classes 1) Keratoconus 2) 

Normal 3) Suspect. It was labelled as such by 

three corneal specialists based on standard 

criteria in earlier studies [18].  

 

The keratoconus class has 1050 images. The 

normal class has 1050 and suspect class has 

861 images. The entire dataset is split into 

70% train set and 15% validation and 15% 

test sets. The train set contains 2072 images 

and validation, and test set contains 444 and 

445 images respectively.  
 

To handle class imbalance in the dataset, 

class weights are calculated using a balanced 

approach which assigns higher weights to 

less represented classes in the training 

dataset.  

 

These computed class weights are then used 

to adjust loss function during model training 

to ensure a more balanced approach across all 

classes. 

 

            𝑤𝑗 =
𝑁train

𝐶×𝑁𝑗
                             (1) 

Where,  

       𝑤𝑗 is the weight for class 𝑗, 

𝑁 is the total number of samples in the training 

set, 
C is the number of classes,  

 𝑁𝑗 is the number of samples in class 𝑗 in the 

training set. 

 

 
Figure 1: Corneal topography images: (a) 

Keratoconus, (b) Normal, and (c) Suspect. 

 

 
Data Preprocessing 
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To extract features from corneal images we first 

converted the images from RGB to L*a*b* 

colour space. L*a*b* colour space was used in 

previous work [19] to enhance the retinal image 

quality. In this work, it is used as a preprocessing 

step before feature extraction.  

 

Extraction of features using wavelets 
After, RGB to L*a*b* conversion, Discrete 

wavelets are used for feature extraction from 

corneal maps. Wavelets are mathematical 

functions that break down data into multiple 

frequency components, allowing each component 

to be analysed at a resolution suited to its scale. 

These functions have become essential tools for 

examining complex datasets. Unlike the Fourier 

transform, which represents an image solely 

based on its frequency content without spatial 

localization, wavelet functions maintain spatial 

localization. Due to its ability to represent images 

at multiple resolutions, the Wavelet Transform is 

a more effective method for extracting features 

from images. The wavelet-based feature 

extraction of medical images was implemented 

on brain MRI images in previous studies [25]. 

Four wavelet functions are used in this study 

namely, bior1.5, db4, haar and rbio3.1. 

Decomposition level for all the wavelets is set to 

4. 

 

Feature selection using L1 Logistic 

Regression 

Feature selection is a crucial preprocessing 

step in machine learning (ML) that aims to 

reduce the dimensionality of a dataset. This 

process enhances model performance by 

improving interpretability and reducing 

computational costs.  

 

Furthermore, it helps eliminate noisy or 

irrelevant features, which can lead to more 

accurate predictions. The key challenge lies 

in selecting the most relevant subset of 

features that effectively distinguishes 

different classes while discarding redundant 

or unnecessary data.  

 

In this study we have chosen Logistic 

Regression with L1 regularization for feature 

selection as it is particularly effective in 

reducing dimensionality while maintaining 

classification performance and is able to 

generalize well even in the presence of many 

irrelevant features [26]. The solver for 

logistic regression is set to ‘liblinear’ with 

maximum iterations of ‘10,000’ and the 

parameter ‘C’ is set to its default value of 1.0. 

Features with non-zero coefficients after 

model fitting were retained for further 

analysis, while those with zero coefficients 

were discarded. 

 

 
Figure 1 

 

Figure 1. depicts the Workflow for Wavelet-

Based Keratoconus Detection with LightGBM 

Classifier. 

 

Light Gradient Boosting Machine 

LightGBM,[27] is a comprehensive gradient 

boosting framework with high computational 

efficiency. It improves performance by 

computing feature histograms ahead of time. 

The library includes a number of 
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hyperparameters that allow it to adapt to 

various machine learning scenarios. It can be 

used as standard gradient boosting model 

while incorporating various randomization 

techniques like column sampling and 

bootstrap subsampling. 

 

LightGBM employs a leaf-wise growth 

technique instead of traditional level-wise 

growth. In leaf wise growth, the LightGBM 

picks the leaf (the ending node) with the best 

improvement and splits it further. This 

ensures that the model focuses on the most 

important parts of the tree first. Compared to 

level-wise growth, this approach is faster and 

more efficient at reducing errors. A depth 

limit is added to prevent the model from 

growing too complex and overfit.  

 

To optimize the performance of LightGBM 

classifier, a Randomized Search Cross-

Validation strategy was employed. 

RandomizedSearchCV unlike GridSearchCV 

is a computationally efficient search strategy. 

It samples a fixed number of hyperparameter 

combinations from predefined distributions. 

 

A total of 30 random combinations of 

hyperparameters are evaluated. Model 

performance is evaluated via 

RandomizedSearchCV using a 

PredefinedSplit (ps). This is being done to 

ensure no overlap between training and 

validation dataset preserving the data split 

integrity. The best hyperparameter 

combination is selected based on the 

performance achieved on the validation 

subset of 444 samples. 

 

 

 

 

 

 

 

Table-I: Hyperparameter Search Space for 

LightGBM Classifier 
Hyperparameter Description Search 

Range 
num_leaves Number of leaves in full 

trees 

20 to 150 

max_depth Maximum depth of each tree 3 to 10 

learning_rat

e 
Step size shrinkage used in 

updates 

0.01 to 

0.2 

n_estimators Number of boosting 

iterations 

50 to 500 

subsample Subsample ratio of training 

instances 

0.5 to 1.0 

colsample_b

ytree 

Subsample ratio of columns 

when constructing each tree 

0.5 to 1.0 

 

 

Table I shows the hyperparameter search 

space used for LightGBM classifier tuning, 

specifying parameter descriptions and the 

respective search ranges considered during 

model optimization. 

 

Performance Metrics and Evaluation 

Results 

The entire dataset is split into 70%,15%,15% 

train, val and test subsets. The multi-class 

classification performance of LightGBM 

classifier is evaluated on the test subset of 

445 samples with the following metrics 

which include accuracy, sensitivity (recall), 

specificity, precision and F1-score and area 

under receiver operating characteristic curve 

(AUROC). AUROC is a graphical 

representation of classifier’s ability, with 

False Positive Rate (FPR) True Positive Rate 

(TPR) on x and y axes respectively.  

 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                   (10) 

  Sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                             (11)  

 Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                             (12) 

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                (13) 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
Precision×Recall

Precision+Recall
               (14) 
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Table-II: Best Hyperparameter Settings 

for Each Wavelet Family with level 4 

decomposition 

 

Table II shows the optimal hyperparameter 

values for the LightGBM classifier 

corresponding to each discrete wavelet 

family used for feature extraction.These 

values are obtained through hyperparameter 

optimization using randomized search 

technique 

 

Table-III: Overall performance metrics of 

different wavelet families with level 4 

decomposition 

 

Table III shows the classification 

performance of different wavelet families 

based on weighted and macro averaged 

precision, recall, F1-score, AUC and 

specificity. The metrics were computed using 

LightGBM model for multi classification of 

keratoconus disease. Results show that 

rbio3.1 wavelet consistently outperformed 

other wavelets across all metrics. 

 

 

 

 
 

 

 

 
 

Figures 2 (a) and (b) show the Normalized 

Confusion matrix plot and ROC curve of 

LightGBM   classifier using bior1.5 wavelet 

function with decomposition level of 4 

 

  

Hyperparameter bior1.5 db4 haar rbio3.1 

num_leaves 85 34 123 100 
max_depth 8 6 7 7 
learning_rate 0.0680 0.0379 0.0216 0.1525 
n_estimators 333 237 149 162 
subsample 0.8122 0.7280 0.8540 0.6334 

colsample_bytree 0.5385 0.8059 0.5780 0.8482 

Metric bior1.5 db4 haar rbio3.1 

Weighted Avg. Precision 0.8551 0.8318 0.8570 0.8729 

Weighted Avg. Recall 0.8562 0.8315 0.8539 0.8719 

Weighted Avg. F1-Score 0.8554 0.8309 0.8539 0.8720 

Macro Avg. Precision 0.8491 0.8242 0.8495 0.8669 

Macro Avg. Recall 0.8498 0.8252 0.8501 0.8679 

Macro Avg. F1-Score 0.8493 0.8240 0.8482 0.8670 

Overall Specificity 0.9290 0.9170 0.9285 0.9370 

Weighted Avg. AUC 0.9652 0.9567 0.9620 0.9682 

Macro Avg. AUC 0.9635 0.9544 0.9600 0.9665 
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Figures 3 (a) and (b) show the Normalized 

Confusion matrix plot and ROC curve of 

LightGBM   classifier using db4 wavelet function 

with decomposition level of 4 

 

 
 

 
 
Figures 4 (a) and (b) show the Normalized 

Confusion matrix plot and ROC curve of 

LightGBM   classifier using haar wavelet 

function with decomposition level of 4 
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Figures 5 (a) and (b) show the Normalized 

Confusion matrix plot and ROC curve of 

LightGBM   classifier using rbio3.1 wavelet 

function with decomposition level of 4 

 

 

TABLE-IV: Class-wise Performance Metrics for Different Wavelet functions at level 4 

decomposition 

 

 
Table-IV shows the per-class performance metrics for keratoconus classification using different 

wavelet types for feature extraction ate level 4 decomposition. The table reports Precision, recall, 

Specificity, F1-Score, and Area Under the Curve (AUC) for each class. 
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  Table-V Summary of Studies on Keratoconus Classification Techniques 

 

Study Classes Dataset Evaluation 

Method 

Technique 

Used 

Accuracy 

   (%) 

N. Ahmed  
   2024 [23] 

3-class (KCN, 
Normal, 
Suspect) 
 

16,016 
augmented 
images 

Train/Validation/T
esting 

MobileNet v2 98.00 

Al-Sharify  
   2024 [19] 

5-class (KCN, 
  Normal,  
  Suspect, 
Formefruste, 
Ectasia) 
 

491 subjects / 
8 parameters 

Training/Testing Decision Tree, 
Nearest  
Neighbor 
Analysis 

65.7 / 62.6 

   

    

Gandhi S. 
2022 [22] 

10-class 
(Amsler-
Krumeich 
classification) 

3962 maps 
with 
augmentation 

Training/Testing VGG19 77.43 

    

     
Ali H. Al-
Timemy 
2021 [18] 

3-class (KCN, 
Normal, 
Suspect) 
 

542 eyes / 7 
maps 

Train/Validation/T
esting 

EfficientNet-B0 
+SVM 

81.60 

   

This Study 3-class (KCN, 
Normal, 
Suspect) 

542 eyes / 7 
maps 

Train/Validation/T
esting 

LightGBM 87.19 

     

 

Table-V shows the summary of recent studies 

on keratoconus classification using various 

machine learning algorithms.The table 

compares the number of classes, dataset 

characteristics, evelaution methodologies, 

classification techniques, and reported 

performance metrics of accuracy across each 

study.our study has performed well, when 

compared to [18] provided the use of same 

dataset. Our method has less training and 

execution time due to the application of 

handcrafted features to train the LightGBM 

model. 

 

Table-VI: Accuracy of LightGBM classifier 

on validation and test set with different 

wavelet functions. 

 
Type of 

Wavelet 

Decomposition 

Level 

Accuracy (%) 

Validation Set 

Accuracy (%) 

Test Set 

bior1.5                4 83.11 85.62 

db4                4 82.88 83.15 

haar                4 83.33 85.39 

rbio3.1                4 83.33 87.19 

 
Table-VI depicts the classification performance 

of the LightGBM classifier using different 

wavelet for feature extraction at decomposition 

level 4. The table reports the accuracy 

percentages obtained on both the validation and 

test datasets for each wavelet. 

 

Discussion 

In this study, we developed a comprehensive 

machine learning pipeline for the 

classification of keratoconus from pentacam 

derived colour corneal maps using wavelet-

based texture fea-tures and a LightGBM 

classifier. The dataset of 2961 images are 

divided into 70%-15%-15% stratified train, 

validation and test subsets to en-sure 

balanced representation of classes across all 

subsets. The train set containing 2072 

images, validation set containing 444 images 

and test set containing 445 images. The 

dataset is imbalanced with suspect class 

being the minority. To mitigate this class 

weights are determined using a bal-anced 

method, which allocate greater weights to 
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classes that have fewer samples in the 

training set, The images are first converted 

into L*a*b* colour space to better capture the 

perceptual dif-ferences across colour 

channels, after which four different discrete 

wavelet families—Haar, Daubechies 4 (db4), 

Biorthogonal 1.5 (bior1.5), and Reverse 

Biorthogonal 3.1 (rbio3.1)—were employed 

for multi-scale feature extraction from 

corneal topography images. A decomposition 

level of four was chosen to comprehensively 

capture features across multiple spatial 

scales, from fine-grained local irregularities 

to global corneal shape deformations. 

Features are then standardised using 

‘StandardScaler’ and subject-ed to feature 

selection using L1-regularized lo-gistic 

regression to mitigate redundancy and im-

prove model performance. Hyperparameter 

op-timization is conducted through a 

randomized search strategy employing a 

predefined split cross-validation scheme 

combining training and validation data. The 

hyperparameters are tuned on the validation 

data to find the optimal hy-perparameters. 

The model is again trained on en-tire train 

and validation subsets with best hy-

perparameter combination and is evaluated 

on a reserved unseen test set. In this study, 

LightGBM is selected as a classifier due to its 

high computa-tional efficiency and its ability 

to handle high-dimensional feature sets. 

 

The findings of this study demonstrate the 

effectiveness of integrating discrete wavelet 

transform based feature analysis with 

gradient boosting models for classification of 

keratoconus using pentacam derived corneal 

topography im-ages. The hyperparameter 

search space outlined in Table-I is carefully 

selected to balance the training time and 

performance.  The optimal hy-perparameters 

obtained for each wavelet family in Table-II 

highlight the different wavelets learn-ing 

dynamics. Notably, haar and rbio3.1 re-

quired higher num_leaves values.The 

variation in optimal learning_rate from 

0.0216 for haar  to 0.1525 for rbio3.1 

indicates differences in con-vergence 

behaviour.  

 

Model evaluation metrics presented in Ta-

ble-III highlights the discriminative capacity 

of DWT derived features. Among the wavelet 

fami-lies evaluated rbio3.1 consistently 

achieved su-perior classification 

performance, with a weighted average F1-

score of 0.8720 and an AUC score of 0.9682. 

weighted average scores are calculated along 

with macro average score as the dataset is 

imbalanced. This suggests that rbio3.1 

wavelet captures relevant corneal pattern 

irregularities more effectively than the others.  

 

Class specific analysis in Table-IV further 

emphasizes the clinical relevance of these 

results. Detection of keratoconus cases is 

excellent across all wavelets with recall of 

0.9684 with haar. However, performance for 

suspect cases remained comparatively lower 

with recall of 0.7287 for db4. Notably, 

rbio3.1 consistently outperformed other 

wavelets for suspect detec-tion as well, 

reaffirming its suitability for captur-ing 

subtle topographic anomalies. The figures 

one through four show the normalised 

confusion matrix plots and ROC curves of 

LightGBM mod-el with different wavelet 

functions, 

 

When compared against existing studies in 

Table-V the proposed DWT-LightGBM 

frame-work demonstrates competitive 

performance. While work done in [23] 

reported a higher accu-racy of 98% using a 

MobileNet v2 based deep CNN, their study 

relied on over 16,000 augment-ed images, 

which likely contributed to improved 

performance. In contrast, our method 

achieved 87.19% accuracy using images 

without any aug-mentation, attesting to the 

effectiveness feature extraction via wavelet 
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decomposition.  Validation and test 

accuracies in Table-VI, show that LightGBM 

model trained with rbio3.1 achieved 87.19% 

test accuracy, outperforming other wave-lets. 

Moreover, all wavelets maintained test accu-

racies above 83% indicating that features 

extract-ed by DWT remain highly 

informative for kera-toconus detection. Our 

approach outperformed earlier works done in 

[18] and [23] who achieved 81.6% and 

77.43% accuracy respectively using 

efficientnetb0+SVM and VGG19. These 

results are particularly notable considering 

lower com-putational complexity compared 

to deep CNNs which is crucial for 

deployment in real world clinical workflows. 

However, limitations persist. The relatively 

lower sensitivity for suspect class highlights 

the challenge of discriminating border-line 

ectatic changes. Additionally, while wavelet-

based features offer strong interpretability, 

future work could explore other feature 

extraction tech-niques, optimizations or 

hybrid approaches com-bining CNN feature 

maps with hand crafted fea-tures. 

 

Conclusion 

This study presented a machine learning 

pipe-line for keratoconus classification using 

pen-tacam derived corneal maps, with 

L*a*b* colour space conversion, wavelet 

based feature extrac-tion and feature 

standardization and a LightGBM classifier. 

Among the four tested wavelet families, 

rbio3.1 achieved highest performance, with a 

test accuracy of 87.19%, F1-score of 0.86 and 

an AUC score of 0.96. The integration of L1-

based feature selection and randomized 

hyperparameter optimization further 

enhanced model robustness. Compared to 

existing studies, our approach of-fers a 

computationally efficient and reliable solu-

tion for automated keratoconus detection. 
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